精英家教网 > 高中数学 > 题目详情
已知锐角α、β满足
5
[sin(π-
α
2
) +sin(
π
2
+
α
2
) ]• [cos(
π
2
-
α
2
) +cos(π+
α
2
) ]=-1
1
3
sinβ+sin(2α+β)=0
(1)求cosα的值;
(2)求α+β的值.
(1)∵
5
[sin(π-
α
2
) +sin(
π
2
+
α
2
) ]• [cos(
π
2
-
α
2
) +cos(π+
α
2
) ]=-1

整理得:
5
(sin
α
2
+cos
α
2
)(sin
α
2
-cos
α
2
)=-1,
则cosα=cos2
α
2
-sin2
α
2
=
5
5

(2)∵cosα=
5
5
,且α为锐角,
∴sinα=
2
5
5
,tanα=2,
则sin2α=2sinαcosα=
4
5
,cos2α=cos2α-sin2α=-
3
5

1
3
sinβ+sin(2α+β)=0,
1
3
sinβ+sin2αcosβ+cos2αsinβ=
1
3
sinβ+
4
5
cosβ-
3
5
sinβ=0,
∴tanβ=3,
则tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
2+3
1-2×3
=-1,
又α、β为锐角,∴0<α+β<π,
则α+β=
4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin2α=
3
5
,α∈(
4
2
).
(1)求cosα的值;
(2)求满足sin(α-x)-sin(α+x)+2cosα=-
10
10
的锐角x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角α、β满足
5
[sin(π-
α
2
) +sin(
π
2
+
α
2
) ]• [cos(
π
2
-
α
2
) +cos(π+
α
2
) ]=-1
1
3
sinβ+sin(2α+β)=0
(1)求cosα的值;
(2)求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角α、β满足sinα=
5
5
sin(α-β)=-
10
10
,则β等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•卢湾区二模)(文)已知锐角三角形ABC的三边为连续整数,且角A、B满足A=2B.
(1)当
π
5
<B<
π
4
时,求△ABC的三边长及角B(用反三角函数值表示);
(2)求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源:卢湾区二模 题型:解答题

(文)已知锐角三角形ABC的三边为连续整数,且角A、B满足A=2B.
(1)当
π
5
<B<
π
4
时,求△ABC的三边长及角B(用反三角函数值表示);
(2)求△ABC的面积S.

查看答案和解析>>

同步练习册答案