【题目】在平面直角坐标系中,直线l:yx﹣3经过椭圆1(a>b>0)的一个焦点,且点(0,b)到直线l的距离为2.
(1)求椭圆E的方程;
(2)A、B、C是椭圆E上的三个动点,A与B关于原点对称,且|CA|=|CB|,求△ABC面积的最小值,并求此时点C的坐标.
科目:高中数学 来源: 题型:
【题目】坐标系与参数方程:在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系,已知点的极坐标为,直线的极坐标方程为,且点在直线上
(Ⅰ)求的值和直线的直角坐标方程及的参数方程;
(Ⅱ)已知曲线的参数方程为,(为参数),直线与交于两点,求的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物.虽然只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响.我国标准如下表所示.我市环保局从市区四个监测点2018年全年每天的监测数据中随机抽取天的数据作为样本,监测值如茎叶图如图所示.
(Ⅰ)求这天数据的平均值;
(Ⅱ)从这天的数据中任取天的数据,记表示其中空气质量达到一级的天数,求的分布列和数学期望;
(Ⅲ)以天的日均值来估计一年的空气质量情况,则一年(按天计算)中大约有多少天的空气质量达到一级.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方形的边长为4,E,F分别为,的中点,以为棱将正方形折成如图所示的的二面角,点M在线段上.
(1)若M为的中点,且直线与由A,D,E三点所确定平面的交点为G,试确定点G的位置,并证明直线面;
(2)是否存在M,使得直线与平面所成的角为;若存在,求此时的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若在上单调递减,求的取值范围;
(2)若在处取得极值,判断当时,存在几条切线与直线平行,请说明理由;
(3)若有两个极值点,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图已知椭圆,是长轴的一个端点,弦过椭圆的中心,且,.
(Ⅰ)求椭圆的方程:
(Ⅱ)设为椭圆上异于且不重合的两点,且的平分线总是垂直于轴,是否存在实数,使得,若存在,请求出的最大值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在).
(1)求居民收入在的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在的这段应抽取多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com