精英家教网 > 高中数学 > 题目详情
16.在△ABC中,$\overrightarrow{BA}$=(cos16°,sin16°),$\overrightarrow{BC}$=(2sin29°,2cos29°),则△ABC面积为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{4}$

分析 根据向量$\overrightarrow{BA}$,$\overrightarrow{BC}$的坐标及两角和的正弦公式、向量夹角的余弦公式便可求出cos∠B,从而求出sin∠B,而△ABC的两边BA,BC的长度可以求出,从而根据三角形的面积公式便可求出△ABC的面积.

解答 解:cos∠B=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|}=\frac{2cos16°sin29°+2sin16°cos29°}{1•2}$=$\frac{2sin45°}{2}=\frac{\sqrt{2}}{2}$;
∴$sin∠B=\frac{\sqrt{2}}{2}$;
∴${S}_{△ABC}=\frac{1}{2}|\overrightarrow{BA}||\overrightarrow{BC}|sin∠B$=$\frac{1}{2}×1×2×\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}$.
故选A.

点评 考查向量夹角余弦的坐标公式,两角和的正弦公式,sin2α+cos2α=1,以及三角形的面积公式:S=$\frac{1}{2}absinC$.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,若a=7,b=8,cosC=$\frac{13}{14}$,求最大角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=sin(2x+$\frac{π}{6}$),则函数f(x)的图象(  )
A.关于点($\frac{5π}{12}$,0)对称B.关于点($\frac{π}{2}$,0)对称
C.关于直线x=$\frac{5π}{12}$对称D.关于直线x=$\frac{π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列命题中正确的个数是(  )
①过异面直线a,b外一点P有且只有一个平面与a,b都平行;
②异面直线a,b在平面α内的射影相互垂直,则a⊥b;
③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
④直线a,b分别在平面α,β内,且a⊥b,则α⊥β.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线l1:x+2my-1=0与l2:(3m-1)x-my-1=0平行,则实数m的值为(  )
A.0B.$\frac{1}{6}$C.0或$\frac{1}{6}$D.0或$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知幂函数f(x)=xα的图象过点(8,4),则α=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.关于x的方程x2-2tx+t2-1=0的两个根中的一个根在(-2,0)内,另一个根在(1,2)内,则实数t的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(2-3),b=f(3m),c=f(log0.53),则(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=($\frac{1}{2}$)${\;}^{\sqrt{{x}^{2}-x-2}}$的单调递增区间为(  )
A.(-∞,-1]B.[2,+∞)C.(-∞,$\frac{1}{2}$)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

同步练习册答案