A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{2}}{4}$ |
分析 根据向量$\overrightarrow{BA}$,$\overrightarrow{BC}$的坐标及两角和的正弦公式、向量夹角的余弦公式便可求出cos∠B,从而求出sin∠B,而△ABC的两边BA,BC的长度可以求出,从而根据三角形的面积公式便可求出△ABC的面积.
解答 解:cos∠B=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|}=\frac{2cos16°sin29°+2sin16°cos29°}{1•2}$=$\frac{2sin45°}{2}=\frac{\sqrt{2}}{2}$;
∴$sin∠B=\frac{\sqrt{2}}{2}$;
∴${S}_{△ABC}=\frac{1}{2}|\overrightarrow{BA}||\overrightarrow{BC}|sin∠B$=$\frac{1}{2}×1×2×\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}$.
故选A.
点评 考查向量夹角余弦的坐标公式,两角和的正弦公式,sin2α+cos2α=1,以及三角形的面积公式:S=$\frac{1}{2}absinC$.
科目:高中数学 来源: 题型:选择题
A. | 关于点($\frac{5π}{12}$,0)对称 | B. | 关于点($\frac{π}{2}$,0)对称 | ||
C. | 关于直线x=$\frac{5π}{12}$对称 | D. | 关于直线x=$\frac{π}{12}$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | $\frac{1}{6}$ | C. | 0或$\frac{1}{6}$ | D. | 0或$\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-1] | B. | [2,+∞) | C. | (-∞,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com