精英家教网 > 高中数学 > 题目详情
如图,在正四棱柱ABCD-A1B1C1D1中,已知AB=2,AA1=,M为棱A1A上的点,若A1C⊥平面MB1D1
(Ⅰ)确定点M的位置;
(Ⅱ)求二面角D1-MB1-B的大小.

【答案】分析:方法一(Ⅰ)连结A1D,证明△A1MD1∽△D1A1D,通过计算确定点M的位置;
(Ⅱ)引A1E⊥B1M于E,连结D1E,则A1E是D1E在平面BA1上的射影,说明∠A1ED1是二面角D1-MB1-B的平面角的补角,通过解三角形求二面角D1-MB1-B的大小.
方法二(Ⅰ)通过建立空间直角坐标系,利用向量的数量积求解点M的位置;
(Ⅱ)求出两个平面的法向量,利用空间向量的数量积求二面角D1-MB1-B的大小.
解答:解:(方法一)
(Ⅰ)连结A1D,在正四棱柱ABCD-A1B1C1D1中,侧面ADD1A1为矩形,
∵A1C⊥平面MB1D1
∴A1C⊥D1M,
因此A1C在平面AD1上的射影A1D⊥D1M,
∴△A1MD1∽△D1A1D,
∴A1M=,因此M是A1A的中点.…(6分)
(Ⅱ)引A1E⊥B1M于E,连结D1E,则A1E是
D1E在平面BA1上的射影,由三垂线定理可
知D1E⊥B1M,
∴∠A1ED1是二面角D1-MB1-B的平面角的补角,
由(Ⅰ)知,A1M=,则

∴二面角D1-MB1-B等于.…(12分)
(方法二)
如图,在正四棱住ABCD-A1B1C1D1中,以A为原点,直线AB为x轴,直线AD为y轴建立空间直角坐标系A-xyz,AB=2,AA1=2,则
C(2,2,0),D(0,2,0),A1(0,0,2),B1(2,0,2),D1(0,2,2),
设M(0,0,Z),则=(0,2,2),=(2,2,),…(3分)
(Ⅰ)∵A1C⊥平面MB1D1
∴A1C⊥D1M,∴

,∴
因此M是A1A的中点.…(6分)
(Ⅱ)∵A1C⊥平面MB1D1
是平面MB1D1的一个法向量.
又平面A1B的一个法向量为,…(8分)
∴cos<
∵二面角D1-MB1-B是钝二面角.…(11分)
∴二面角D1-MB1-B等于.…(12分)
点评:本题考查空间想象能力以及计算能力,立体几何问题的解法有两种思路,一是几何法,一是向量法,注意解题时合理选择方法,做到简便快捷.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正四棱柱ABCD-A1B1C1D1中,已知AA1=4,AB=2,E是棱CC1上的一个动点.
(Ⅰ)求证:BE∥平面AA1D1D;
(Ⅱ)当CE=1时,求二面角B-ED-C的大小;
(Ⅲ)当CE等于何值时,A1C⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正四棱柱ABCD-A′B′C′D′中(底面是正方形的直棱柱),侧棱AA′=
3
AB=
2
,则二面角A′-BD-A的大小为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛一模)如图,在正四棱柱ABCD-A1B1C1D1中,AB=a,AA1=
2
a
,E为CC1的中点,AC∩BD=O.
(Ⅰ) 证明:OE∥平面ABC1
(Ⅱ)证明:A1C⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四棱柱ABCD-A1B1C1D1中,AA1=A(x0,y0)AB=2,点E、M分别为A1B、C1C的中点.
(Ⅰ)求证:EM∥平面A1B1C1D1
(Ⅱ)求几何体B-CME的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宜昌模拟)如图,在正四棱柱ABCD-A1B1C1D1 中,AB=BC=1,AA1=2.过顶点D1在空间作直线l,使l与直线AC和BC1所成的角都等于60°,这样的直线l最多可作(  )

查看答案和解析>>

同步练习册答案