精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大小;
(2)若b= a,△ABC的面积为 sinAsinB,求sinA及c的值.

【答案】
(1)解:∵cos2C+2 cosC+2=0.

∴2cos2C+2 cosC+1=0,

即( cosC+1)2=0,

∴cosC=﹣

∵0<∠C<π,

∴∠C=


(2)解:∵c2=a2+b2﹣2abcosC=3a2+2a2=5a2

∴c= a,

∴sinC= sinA,

∴sinA= sinC=

∵SABC= absinC= sinAsinB,

absinC= sinAsinB,

sinC=( 2sinC=

∴c= =1


【解析】(1)利用正弦定理和已知等式,化简可求得cosC的值,进而求C.(2)利用余弦定理可求得c与a的关系,进而求得sinC,然后利用三角形面积公式和已知等式求得c.
【考点精析】通过灵活运用正弦定理的定义和余弦定理的定义,掌握正弦定理:;余弦定理:;;即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,点E是棱PA的中点,PB=PD,平面BDE⊥平面ABCD.
(Ⅰ)求证:PC∥平面BDE;
(Ⅱ)求证:PC⊥平面ABCD;
(Ⅲ)设PC=λAB,试判断平面PAD⊥平面PAB能否成立;若成立,写出λ的一个值(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,已知第二小组频数为12.

(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={x|a﹣1<x<2a+1},B={x|0<x<1},若A∩B=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则 (a5+a7+a9)的值是( )
A.﹣5
B.-
C.5
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图给出的四个对应关系,其中构成映射的是( )

A.(1)(2)
B.(1)(4)
C.(1)(2)(4)
D.(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点.

(1)求证:PA∥平面BMD;
(2)求证:AD⊥PB;
(3)若AB=PD=2,求点A到平面BMD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),当x<0时,f(x)>0,则函数f(x)在[m,n]上有( )
A.最小值f(m)
B.最大值f(n)
C.最小值f(n)
D.最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)=x2 . (Ⅰ)求函数h(x)=f(x)﹣x+1的最大值;
(Ⅱ)对于任意x1 , x2∈(0,+∞),且x1<x2 , 是否存在实数m,使mg(x1)﹣mg(x2)﹣x2f(x2)+x1f(x1)恒为正数?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案