精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形是直角梯形, ,又,直线与直线所成的角为

(1)求证:

(2)求二面角的余弦值.

【答案】(1)见解析.2.

【解析】试题分析:方法1:(1平面ABC5

2)取BC的中点N,连MN平面ABC.作

,交AC的延长线于H,连结MH.由三垂线定理得为二面角的平面角.直线AM与直线PC所成的角为中,

中,

中,

中,

中,

故二面角的余弦值为13

方法2:(1平面ABC5

2)在平面ABC内,过CBC的垂线,并建立空间直角坐标系如图所示.设,则5

,得8

设平面MAC的一个法向量为,则由10

平面ABC的一个法向量为12

显然,二面角为锐二面角,二面角的余弦值为13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,分别为内角所对的边,且满足.

1)求角的大小;

2)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,若函数恰有一个零点,求实数的取值范围;

2 时,对任意,有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不是直角三角形,它的三个角所对的边分别为已知.

1求证:

2如果面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校高一年级开设五门选修课,每位同学须彼此独立地选三课程,其中甲同学必选课程,不选课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.

Ⅰ)求甲同学选中课程且乙同学未选中课程的概率.

Ⅱ)用表示甲、乙、丙选中课程的人数之和,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2018吉林长春高三下学期二模为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效的改良玉米品种,为农民提供技术支.现对已选出的一组玉米的茎高进行统计,获得茎叶图如下图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.

(I)完成列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?

(II)为了改良玉米品种,现采用分层抽样的方法从抗倒伏的玉米中抽出5株,再从这5株玉米中选取2株进行杂交试验,选取的植株均为矮茎的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照,…,分成8组,制成了如图1所示的频率分布直方图.

(图1) (图2)

Ⅰ)通过频率分布直方图,估计该市居民每月的用水量的平均数和中位数(精确到0.01);

求用户用水费用(元)关于月用水量(吨)的函数关系式;

Ⅲ)如图2是该县居民李某20171~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是.若李某20171~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)判断函数在区间上的单调性;

(Ⅱ)若函数在区间上满足恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如表:

停靠时间

2.5

3

3.5

4

4.5

5

5.5

6

轮船数量

12

12

17

20

15

13

8

3

(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为小时,求的值;

(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.

查看答案和解析>>

同步练习册答案