已知圆的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.
(Ⅰ)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;
(Ⅱ)圆、是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
(Ⅰ)。(Ⅱ)。
解析试题分析:
思路分析:(Ⅰ)由利用“平方关系”消参得到:x2+y2=1,
应用两角和的余弦公式变形,得到ρ=2cos(θ+)=cosθ-sinθ,
即ρ2=ρcosθ-ρsinθ利用公式化为普通方程。
(Ⅱ)通过计算圆心距,
判断两圆相交,通过建立方程组,进一步求弦长,也可考虑“几何法”。
解:(Ⅰ)由得x2+y2=1,
又∵ρ=2cos(θ+)=cosθ-sinθ,
∴ρ2=ρcosθ-ρsinθ.∴x2+y2-x+y=0,
即 5分
(Ⅱ)圆心距,
得两圆相交,由
得,A(1,0),B,
∴ 10分
考点:极坐标方程、参数方程与普通方程的互化,参数方程的应用。
点评:中档题,参数方程化为普通方程,常用的“消参”方法有,代入消参、加减消参、平方关系消参等。利用参数方程,往往会将问题转化成三角函数问题,利用三角公式及三角函数的图象和性质,化难为易。极坐标方程化为普通方程,常用的公式有,,等。
科目:高中数学 来源: 题型:解答题
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标,曲线的极坐标方程为(其中为常数).
(1)若曲线与曲线只有一个公共点,求的取值范围;
(2)当时,求曲线上的点与曲线上的点的最小距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线(t为参数)经过椭圆(为参数)的左焦点F.
(Ⅰ)求m的值;
(Ⅱ)设直线l与椭圆C交于A、B两点,求|FA|·|FB|的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立直角坐标系,直线的参数方程
(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;
(Ⅱ)设曲线经过伸缩变换得到曲线,在曲线上求一点,使点到直线的距离最小,并求出最小距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com