精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,圆的极坐标方程为,若以极点为原点,极轴所在的直线为轴建立平面直角坐标系.

(1)求圆的参数方程;

(2)在直线坐标系中,点是圆上的动点,试求的最大值,并求出此时点的直角坐标.

【答案】(1)为参数)(2)的最大值为时,点的直角坐标为.

【解析】试题分析:(1)极坐标转化为参数方程,先化为标准方程,再化为参数方程,利用 解题;(2),代入圆,得到的最大值为的直角坐标为.

试题解析

解:(1)因为,所以

为圆的直角坐标方程,

所以圆的参数方程为为参数).

2)设,得

代入,整理得

则关于的方程必有实数根,所以

化简得,解得,即的最大值为

代入方程得

解得,代入,得

的最大值为时,点的直角坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =( ,﹣1), =( ),若存在非零实数k,t使得 = +(t2﹣3) =﹣k +t ,且 ,试求: 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)求f(x)+f(1﹣x)的值;
(2)若数列{an}满足an=f(0)+f( )+f( )+…+f( )+f(1)(n∈N*),求数列{an}的通项公式;
(3)若数列{bn}满足bn=2nan , Sn是数列{bn}的前n项和,是否存在正实数k,使不等式knSn>3bn对于一切的n∈N*恒成立?若存在,请求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】偶函数f(x)满足f(x﹣1)=f(x+1),且在x∈[0,1]时,f(x)=x2 , g(x)=ln|x|,则函数h(x)=f(x)﹣g(x)的零点的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,试求y=[f(x)]2+f(x2)的值域

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函致y=f(x),恒有f(x+4)=f(x)﹣f(﹣2)成立,且f(0)=1,当0≤x1<x2≤2时, <0,则方程f(x)﹣lg|x|=0的根的个数为(
A.12
B.10
C.6
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且a2=﹣5,S5=﹣20.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求使不等式Sn>an成立的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足an+Sn=2.
(1)求数列{an}的通项公式;
(2)求证数列{an}中不存在三项按原来顺序成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某园林公司准备绿化一块半径为200米,圆心角为 的扇形空地(如图的扇形OPQ区域),扇形的内接矩形ABCD为一水池,其余的地方种花,若∠COP=α,矩形ABCD的面积为S(单位:平方米).
(1)试将S表示为关于α的函数,求出该函数的表达式;
(2)角α取何值时,水池的面积 S最大,并求出这个最大面积.

查看答案和解析>>

同步练习册答案