精英家教网 > 高中数学 > 题目详情
已知点P是圆x2y2=16上的一个动点,点Ax轴上的定点,坐标为(12,0),当P在圆上运动时,线段PA的中点M的轨迹方程是___________.

解析:圆x2y2=16的参数方程是

P(4cosθ,4sinθ),由中点公式得即(x-6)2y2=4.

答案:(x-6)2y2=4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上一动点,点P在y轴上的射影为Q,设满足条件
QM
QP
(λ为非零常数)的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)若存在过点N(
1
2
,0)
的直线l与曲线C相交于A、B两点,且
OA
OB
=0(O为坐标原点),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上的动点,点P在y轴上的射影为Q,设满足条件
QM
=2
QP
的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设过点N(1,0)且斜率为k1(k1≠0)的直线l被曲线C所截得的弦的中点为A,O为坐标原点,直线OA的斜率为k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上任意一点,过点P作y轴的垂线,垂足为Q,点R满足
RQ
=
3
PQ
,记点R的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A(0,1),点M、N在曲线C上,且直线AM与直线AN的斜率之积为
2
3
,求△AMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省金华一中高二(上)12月月考数学试卷(理科)(解析版) 题型:解答题

已知点P是圆x2+y2=1上任意一点,过点P作y轴的垂线,垂足为Q,点R满足,记点R的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A(0,1),点M、N在曲线C上,且直线AM与直线AN的斜率之积为,求△AMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省衢州市龙游中学高二(上)期中数学试卷(理科)(解析版) 题型:解答题

已知点P是圆x2+y2=1上任意一点,过点P作y轴的垂线,垂足为Q,点R满足,记点R的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A(0,1),点M、N在曲线C上,且直线AM与直线AN的斜率之积为,求△AMN的面积的最大值.

查看答案和解析>>

同步练习册答案