【题目】如图,在四棱锥中, 底面, , , 是的中点.
(Ⅰ)证明;
(Ⅱ)证明平面;
(Ⅲ)求二面角的大小.
【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ) .
【解析】试题分析:
(Ⅰ)由题意可得CD⊥平面PAC,结合线面垂直的定义即可得到AE⊥CD;
(Ⅱ)由题意可得AE⊥PD,AB⊥PD.利用线面垂直的判断定理可得证明平面;
(Ⅲ)由题意找到二面角的平面角,结合三角形的边长关系可得二面角的大小是.
试题解析:
(I)证明:在四棱锥PABCD中,
因PA⊥底面ABCD,CD平面ABCD,故PA⊥CD.
∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC.
而AE平面PAC,
∴AE⊥CD.
(II)证明:由PA=AB=BC,∠ABC=60,可得AC=PA.
∵E是PC的中点,∴AE⊥PC.
由(I)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.
而PD平面PCD,∴AE⊥PD.
∵PA⊥底面ABCD,PD在底面ABCD内射影是AD,AB⊥AD,∴AB⊥PD.
又AB∩AE=A,综上得PD⊥平面ABE.
(III)过点A作AM⊥PD,垂足为M,连接EM.
由(II)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则EM⊥PD.
因此∠AME是二面角APDC的平面角。
由已知,得∠CAD=30°.设AC=a,可得 .
在Rt△ADP中,∵AM⊥PD,∴AM.PD=PA.AD.则 .
在Rt△AEM中, .
所以二面角APDC的大小是 .
科目:高中数学 来源: 题型:
【题目】设关于x的方程x2+px﹣12=0和x2+qx+r=0的解集分别是A,B,且A≠B.A∪B={﹣3,2,4},A∩B={﹣3}.求p,q,r的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设复数z=a+i(i是虚数单位,a∈R,a>0),且|z|= .
(Ⅰ)求复数z;
(Ⅱ)在复平面内,若复数+(m∈R)对应的点在第四象限,求实数m取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①函数y=|x|与函数y=( )2表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
④设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;
其中正确命题的序号是(填上所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}满足a1=1, (n∈N+).
(1)证明:数列 是等差数列;
(2)求数列{an}的通项公式an;
(3)设bn=n(n+1)an , 求数列{bn}的前n项和Sn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com