精英家教网 > 高中数学 > 题目详情
在△ABC中,bcosA=acosB,则三角形为(    )

A.直角三角形                        B.锐角三角形

C.等腰三角形                        D.等边三角形

解析:由余弦定理得

=a·.

化简得a2=b2,∴a=b.

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、在平面几何中,有射影定理:“在△ABC中,AB⊥AC,点A在BC边上的射影为D,有AB2=BD•BC.”类比平面几何定理,研究三棱锥的侧面面积与射影面积、底面面积的关系,可以得出的正确结论是:“在三棱锥A-BCD中,AD⊥平面ABC,点A在底面BCD上的射影为O,则有
S△ABC2=S△BCO•S△BCD

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在△ABC中AB⊥AC、AD⊥BC,D是垂足,则AB2=BD•BC(射影定理).类似的有命题:在三棱锥A-BCD(图2)中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,则(S△ABC2=S△BCO•S△BCD(S表示面积.上述命题(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图甲,在△ABC中,AB⊥AC,AD⊥BC,D为.垂足,则AB2=BD•BC,该结论称为射影定理.如图乙,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比射影定理,探究S△ABC、S△BCO、S△BCD这三者之间满足的关系是
S△ABC2=S△BCOS△BCD
S△ABC2=S△BCOS△BCD

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省舟山市岱山县大衢中学高二(上)期中数学试卷(理科)(解析版) 题型:填空题

如图甲,在△ABC中,AB⊥AC,AD⊥BC,D为.垂足,则AB2=BD•BC,该结论称为射影定理.如图乙,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比射影定理,探究S△ABC、S△BCO、S△BCD这三者之间满足的关系是   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市望子成龙学校高二(上)期中数学模拟试卷(解析版) 题型:填空题

如图甲,在△ABC中,AB⊥AC,AD⊥BC,D为.垂足,则AB2=BD•BC,该结论称为射影定理.如图乙,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比射影定理,探究S△ABC、S△BCO、S△BCD这三者之间满足的关系是   

查看答案和解析>>

同步练习册答案