精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{1}{2}{x^2}$+|x+1-2a|,其中a是实数.
(Ⅰ)判断f(x)的奇偶性,并说明理由;
(Ⅱ)当x∈[-1,1]时,f(x)的最小值为$\frac{1}{2}{a^2}$,求a的值.

分析 (Ⅰ)当$a=\frac{1}{2}$时,f(x)为偶函数;当$a≠\frac{1}{2}$时,f(x)为非奇非偶的函数.运用奇偶性的定义,即可判断;
(Ⅱ)对a讨论,①若2a-1≤-1,即a≤0,②若2a-1≥1,即a≥1,③若-1<2a-1<1,即0<a<1,运用单调性,可得最小值,解方程可得a的值.

解答 解:(Ⅰ)当$a=\frac{1}{2}$时,f(x)为偶函数;
当$a≠\frac{1}{2}$时,f(x)为非奇非偶的函数.
①当$a=\frac{1}{2}$时,$f(x)=\frac{1}{2}{x^2}+|x|$,有f(-x)=f(x),
所以f(x)为偶函数;
②当$a≠\frac{1}{2}$时,f(0)=|1-2a|≠0,所以f(x)不是奇函数;
又因为$f(2a-1)=\frac{1}{2}{(2a-1)^2}$,而$f(1-2a)=\frac{1}{2}{(2a-1)^2}+2|1-2a|$,
即f(1-2a)≠f(2a-1),所以f(x)不是偶函数;
综上,当$a≠\frac{1}{2}$时,f(x)既不是奇函数也不是偶函数.
(Ⅱ)①若2a-1≤-1,即a≤0,
当x∈[-1,1]时,$f(x)=\frac{1}{2}{x^2}+x+1-2a=\frac{1}{2}{(x+1)^2}+\frac{1}{2}-2a$,
故f(x)在[-1,1]上递增,
所以$f{(x)_{min}}=f(-1)=\frac{1}{2}-2a$=$\frac{1}{2}{a^2}$,得$a=-2-\sqrt{5}$.
②若2a-1≥1,即a≥1,
当x∈[-1,1]时,$f(x)=\frac{1}{2}{x^2}-x-1+2a=\frac{1}{2}{(x-1)^2}-\frac{3}{2}+2a$,
故f(x)在[-1,1]上递减,
所以$f{(x)_{min}}=f(1)=-\frac{3}{2}+2a$=$\frac{1}{2}{a^2}$,得a=1或a=3.
③若-1<2a-1<1,即0<a<1,
$f(x)=\left\{\begin{array}{l}\frac{1}{2}{(x-1)^2}-\frac{3}{2}+2a(-1≤x<2a-1)\\ \frac{1}{2}{(x+1)^2}+\frac{1}{2}-2a(2a-1≤x≤1)\end{array}\right.$,
故f(x)在[-1,2a-1]上递减,在[2a-1,1]上递增;
所以$f{(x)_{min}}=f(2a-1)=2{a^2}-2a+\frac{1}{2}=\frac{1}{2}{a^2}$,得$a=\frac{1}{3}$.
综上,$a=-2-\sqrt{5}$或$a=\frac{1}{3}$或a=1或a=3.

点评 本题考查函数的奇偶性的判断和函数的最值的求法,注意运用定义和分类讨论的思想方法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.过圆x2+y2=4上的一点M(1,-$\sqrt{3}$)的切线方程为(  )
A.x+$\sqrt{3}$y-4=0B.x-$\sqrt{3}$y-4=0C.x-$\sqrt{3}$y+4=0D.x+$\sqrt{3}$y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.集合A={-1,0,1,3},集合B={x|x2-x-2≤0,x∈N},全集U={x||x-1|≤4,x∈Z},则A∩(∁UB)=(  )
A.{3}B.{-1,3}C.{-1,0,3}D.{-1,1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点为M,左顶点为A,以F是为圆心过点A的圆交双曲线的一条渐近线于P,Q两点,若|PQ|不小于双曲线的虚轴长,则该双曲线的离心率的取值范围是(  )
A.(1,2]B.$(1,\sqrt{3}]$C.(1,3]D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-x-6≤0},B={x|x>1},则A∩B=(  )
A.[-2,3]B.(1,3]C.(1,3)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.使不等式|x+1|≤4成立的一个必要不充分条件是(  )
A.2≤x≤3B.-6≤x≤3C.-5≤x≤3D.-6≤x≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列$\{a_n^{\;}\}$满足a1=2,${a_{n+1}}=2{a_n}+2\;\;(n∈{N^*})$.
(1)求数列$\{a_n^{\;}\}$的通项公式an
(2)若数列$\{b_n^{\;}\}满足b_n^{\;}={log_2}({a_n}+2)$,设Tn是数列$\{\frac{b_n}{{{a_n}+2}}\}$的前n项和,求证:${T_n}<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若tanα=3,则sin2α+2cos2α=$\frac{11}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系中,已知函数y=loga(x-3)+2(a>0,且a≠1)过定点P,且角α的终边过点P,始边是以x正半轴为始边,则3sin2α+cos2α的值为$\frac{6}{5}$.

查看答案和解析>>

同步练习册答案