精英家教网 > 高中数学 > 题目详情

【题目】陕西省洛川地处北纬35°-36°,东经109°,昼夜温差,是国内外专家公认的世界最佳苹果优生区,是国家生态建设示范试点.近几年,果农为了提高经济效益,增加了广告和包装的投资费用,5年内果农投入的广告和包装费用(万元)与销售额(万元)之间有下面对应数据:

2

4

5

6

8

30

40

60

50

70

(1)假设之间线性相关,求回归直线方程;

(2)预测广告和包装费用为10(万元)时销售额是多少?

【答案】(1);(2)该果农销售额是82.5万元.

【解析】试题分析:(1)根据表格中的数据分别求出公式中所需的量,代入公式求出,将样本的中心点坐标代入回归方程可得进而可得结果;(2)代入(1)中所求回归方程即可得结果.

试题解析:(1)计算

,则回归直线方程是

(2)当时, ,则该果农销售额是82.5万元.

【方法点晴】本题主要考查线性回归方程及回归分析,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;(2) 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调递增区间;

(Ⅱ)用反证法证明:在上,不存在不同的两点,使得的图象在这两点处的切线相互平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有5张编号依次为1、2、3、4、5的卡片,这5 张卡片除号码外完全相同.现进行有放回的连续抽取2 次,每次任意地取出一张卡片.

(1)求出所有可能结果数,并列出所有可能结果;

(2)求事件“取出卡片号码之和不小于7 或小于5”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;

(2)若 都是从区间上任取的一个数,求成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,,

,侧棱底面.

I)证明:平面平面

II)若直线与平面所成的角的余弦值为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图已知是边长为的正方形的中心,点分别是的中点,沿对角线把正方形折成二面角.

(1)证明:四面体的外接球的体积为定值,并求出定值;

(2)若二面角为直二面角,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若图,在正方体中, 分别是的中点.

(1)求证:平面平面

(2)在棱上是存在一点,使得平面,若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最大值;

(2)若在区间上,函数的图象恒在直线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

同步练习册答案