精英家教网 > 高中数学 > 题目详情

【题目】设F1 , F2分别是C: (a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.

(1)若直线MN的斜率为 ,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.

【答案】
(1)解:∵M是C上一点且MF2与x轴垂直,

∴M的横坐标为c,当x=c时,y= ,即M(c, ),

若直线MN的斜率为

即tan∠MF1F2=

即b2= =a2﹣c2

即c2+ ﹣a2=0,

即2e2+3e﹣2=0

解得e= 或e=﹣2(舍去),

即e=


(2)解:由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,

设M(c,y),(y>0),

,即 ,解得y=

∵OD是△MF1F2的中位线,

=4,即b2=4a,

由|MN|=5|F1N|,

则|MF1|=4|F1N|,

解得|DF1|=2|F1N|,

设N(x1,y1),由题意知y1<0,

则(﹣c,﹣2)=2(x1+c,y1).

,即

代入椭圆方程得

将b2=4a代入得

解得a=7,b=


【解析】(1)根据条件求出M的坐标,利用直线MN的斜率为 ,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是某算法的程序框图,则程序运行后输出的结果是(

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx),gx)满足关系gx)=fxfx),其中α是常数.

(1)设fx)=cosx+sinx,求gx)的解析式;

(2)设计一个函数fx)及一个α的值,使得

(3)当fx)=|sinx|+cosx时,存在x1x2R,对任意xRgx1)≤gx)≤gx2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆 =1(a>b>0)的左焦点为F,过点F的直线交椭圆于A,B两点.|AF|的最大值是M,|BF|的最小值是m,满足Mm= a2

(1)求该椭圆的离心率;
(2)设线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点,O是坐标原点.记△GFD的面积为S1 , △OED的面积为S2 , 求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】钝角三角形ABC的面积是 ,AB=1,BC= ,则AC=(
A.5
B.
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ex﹣2x.
(1)讨论f(x)的单调性;
(2)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;
(3)已知1.4142< <1.4143,估计ln2的近似值(精确到0.001).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定下列四个命题:

若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;

若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

垂直于同一直线的两条直线相互平行;

若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.

其中,为真命题的是  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,

(1)求证:EF⊥平面ACFD;
(2)求二面角B﹣AD﹣F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=(  )

A.7
B.12
C.17
D.34

查看答案和解析>>

同步练习册答案