A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 ①切化弦,利用合角公式可得cos(A+B)<0,推出C为锐角;
②⑤利用正弦定理,再用和角公式得出结论;
④根据|cosX|≤1,不等式可转换为cos(A-B)=cos(B-C)=cos(C-A)=1,进而得出结论.
解答 解:①若tanA•tanB>1,
∴tanA>0,tanB>0,即A,B为锐角,
∵sinAsinB>cosAcosB,
∴cos(A+B)<0,
∴A+B为钝角,故C为锐角,
则△ABC一定是锐角三角形,故错误;
②若sin2A+sin2B=sin2C,由正弦定理可得:a2+b2=c2,则△ABC一定是直角三角形,故正确;
③若cos(A-B)cos(B-C)cos(C-A)=1,
∵|cosX|≤1,
∴cos(A-B)=cos(B-C)=cos(C-A)=1
∵A、B、C<180°
∴A-B=B-C=C-A=0
∴A=B=C=60°
∴△ABC是等边三角形 则△ABC一定是等边三角形,故正确;
④在锐角△ABC中,
∴A+B>90°,
∴A>90°-B,
∴sinA>sin(90°-B),
∴sinA>cosB,故正确;
⑤在△ABC中,内角A,B,C的对边分别为a,b,c,
∵$\frac{a}{cosA}=\frac{b}{cosB}=\frac{c}{cosC}$,由正弦定理知sinAcosB=sinBcosA,
∴sin(B-A)=0,
∴B=A,同理可得A=C,
∴△ABC一定是等边三角形,故正确.
故选C.
点评 考查了三角函数的和就角公式,正弦定理的应用.难点是对题中条件的分析,划归思想的应用.
科目:高中数学 来源: 题型:选择题
A. | 0<x0<$\frac{1}{4}$ | B. | $\frac{1}{4}$<x0<$\frac{1}{3}$ | C. | $\frac{1}{3}$<x0<$\frac{1}{2}$ | D. | $\frac{1}{2}$<x0<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 34 | C. | 6 | D. | 2或34 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com