已知函数的定义域是
,
是
的导函数,且
在
内恒成立.
求函数的单调区间;
若,求
的取值范围;
(3) 设是
的零点,
,求证:
.
(1) ;(2)
;(3)详见解析.
【解析】
试题分析:(1)利用求导的思路求解函数的单调区间,从分借助;(2)首先对
求导,然后借助已知的不等式恒成立进行转化为
在
内恒成立,进而采用构造函数的技巧,
,通过求导研究其最大值,从而得到
的取值范围;(3)借助第一问结论,得到
,然后通过变形和构造的思路去证明不等式成立.
试题解析:(1),∵
在
内恒成立
∴在
内恒成立,
∴的单调区间为
4分
(2),∵
在
内恒成立
∴在
内恒成立,即
在
内恒成立,
设,
,
,
,
,
故函数在
内单调递增,在
内单调递减,
∴,∴
8分
(3)∵是
的零点,∴
由(1),
在
内单调递增,
∴当时,
,即
,
∴时
,∵
,∴
,
且即
∴,
∴
14分
考点:1.函数的单调性;(2)导数的应用;(3)不等式的证明.
科目:高中数学 来源:2015届内蒙古高一上学期期中考试数学试卷(解析版) 题型:选择题
已知函数的定义域是[0,2],则函数
的定义域是( )
A. [ 0,2] B. C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com