精英家教网 > 高中数学 > 题目详情
正三棱柱的底面边长为,侧棱长为,则与侧面所成的角为(  )
A.B.C.D.
A


如图,取中点,连接。因为为正三棱柱,所以为正三角形。因为中点,所以。因为,所以,所以,从而就是与侧面所成角。因为正三棱柱的底面边长为,侧棱长为,所以,从而,则,故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

给出以下四个命题
①如果直线和平面内无数条直线垂直,则
②如果平面//,直线,直线,则两条直线一定是异面直线;
③如果平面上有不在同一直线上的三个点,它们到平面的距离都相等,那么//
④如果是异面直线,则一定存在平面且与垂直
其中真命题的个数是:(   )
A.3个B.2个
C.1个D.0个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分) 已知在正四棱锥中(如图),高为1 ,其体积为4 ,求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列命题:(1)三点确定一个平面;(2)在空间中,过直线外一点只能作一条直线与该直线平行;(3)若平面上有不共线的三点到平面的距离相等,则;(4)若直线满足.其中正确命题的个数是 (      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题8分)如图,正三棱柱底面边长为.
(1)若侧棱长为,求证:;
(2)若AB1BC1角,求侧棱长

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知三棱锥P=ABC中,PA⊥PC,D为AB的中点,M为PB的中点,且AB=2PD.
(1)求证:DM//面PAC;
(2)找出三棱锥P—ABC中一组面与面垂直的位置关系,并给出证明(只需找到一组即可).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在平行六面体中,的中点,.
(1)化简:;
(2) 设,若,求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图7-4,已知△ABC中, ∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD绕CD旋转至A′CD,使点A′与点B之间的距离A′B=

(1)求证:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大小;
(3)求异面直线A′C与BD所成的角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,垂直于矩形所在的平面,分别是的中点.
(I)求证:平面 ;
(Ⅱ)求证:平面平面

查看答案和解析>>

同步练习册答案