精英家教网 > 高中数学 > 题目详情
2.在哈尔滨的中央大街的步行街同侧有6块广告牌,牌的底色可选用红、蓝两种颜色,若要求相邻两块牌的底色不都为蓝色,则不同的配色方案共有(  )
A.20B.21C.22D.24

分析 根据题意,要求相邻两块牌的底色不都为蓝色,则蓝色最多可以用4块,则分4种情况依次讨论配色方案的数目,由分类计数原理计算可得答案.

解答 解:根据题意,要求相邻两块牌的底色不都为蓝色,则蓝色最多可以用4块,
分4种情况讨论:
①、6块广告牌都不用蓝色,即全部用红色,有1种情况;
②、6块广告牌有1块用蓝色,在6块广告牌选1块用蓝色即可,有C61=6种情况;
③、6块广告牌有2块用蓝色,先将4块红色的广告牌安排好,形成5个空位,在5个空位中任选2个,安排蓝色的广告牌,有C52=10种情况;
④、6块广告牌有3块用蓝色,先将3块红色的广告牌安排好,形成4个空位,在4个空位中任选3个,安排蓝色的广告牌,有C43=4种情况;
则一共有1+6+10+4=21种配色方案;
故选:B.

点评 本题考查排列、组合的实际运用,涉及分类计数原理的应用,需要注意颜色不一定全部用完.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{4}$,且各阶段通过与否相互独立.
(1)求该选手在复赛阶段被淘汰的概率;
(2)设该选手在竞赛中回答问题的个数为ξ,求ξ的分布列与均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)=$\left\{\begin{array}{l}{-x+1,0≤x≤1}\\{lnx,1<x≤e}\end{array}\right.$,直线x=0,x=e,y=0,y=1所围成的区域为M,曲线y=f(x)与直线y=1围成的区域为N,在区域M内任取一个点P,则点P在区域N内概率为(  )
A.$\frac{2e-3}{2e}$B.$\frac{3}{2e}$C.$\frac{{e}^{e}{-e}^{2}+e-1}{e}$D.$\frac{e-1}{e+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为(  )
A.2B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设等差数列{an}的前n项和为Sn,且${S_n}=\frac{1}{3}n{a_n}+{a_n}-c$(c是常数,n∈N*),a2=6.
(1)求数列{an}的通项公式
(2)证明:$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知F是抛物线C:x2=4y的焦点,A(x1,y1),B(x2,y2)为抛物线C上不同的两点,l1,l2分别是抛物线C在点A、点B处的切线,P(x0,y0)是l1,l2的交点.
(1)当直线AB经过焦点F时,求证:点P在定直线上;
(2)若|PF|=2,求|AF|•|BF|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设向量$\overrightarrow{m}$=(x,y),$\overrightarrow{n}$=(x-y),P为曲线$\overrightarrow{m}$•$\overrightarrow{n}$=1(x>0)上的一个动点,若点P到直线x-y+1=0的距离大于λ恒成立,则实数λ的最大值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:
(1)$\root{3}{{{{(-27)}^2}}}+{(0.002)^{-\frac{1}{2}}}-10{(\sqrt{5}-2)^{-1}}+{({\sqrt{2}-\sqrt{3}})^0}$
(2)lg25+$\frac{2}{3}lg8+lg5•lg20+{(lg2)^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求证:(1)sin($\frac{3π}{2}$-α)=-cosα;
(2)cos($\frac{3π}{2}$+α)=sinα.

查看答案和解析>>

同步练习册答案