如图,正三棱柱ABC—A1B1C1的底面边长的3,侧棱AA1=D是CB延长线上一点,且BD=BC.
(Ⅰ)求证:直线BC1//平面AB1D;
(Ⅱ)求二面角B1—AD—B的大小;
(Ⅲ)求三棱锥C1—ABB1的体积.
(Ⅰ)见解析; (Ⅱ)60°; (Ⅲ)
【解析】(Ⅰ)证明:CD//C1B1,又BD=BC=B1C1, ∴ 四边形BDB1C1是平行四边形,
∴BC1//DB1.
又DB1平面AB1D,BC1平面AB1D,∴直线BC1//平面AB1D.
(Ⅱ)解:过B作BE⊥AD于E,连结EB1,
∵B1B⊥平面ABD,∴B1E⊥AD ,
∴∠B1EB是二面角B1—AD—B的平面角,
∵BD=BC=AB,
∴E是AD的中点,
在Rt△B1BE中,
∴∠B1EB=60°.
即二面角B1—AD—B的大小为60°
(Ⅲ)解法一:过A作AF⊥BC于F,∵B1B⊥平面ABC,∴平面ABC⊥平面BB1C1C,
∴AF⊥平面BB1C1C,且AF= ∴
即三棱锥C1—ABB1的体积为
解法二:在三棱柱ABC—A1B1C1中,
即三棱锥C1—ABB1的体积为
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
AO | OB1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com