【题目】甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为各局比赛结果相互独立.则甲在4局以内(含4局)赢得比赛的概率为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】某种新产品投放市场一段时间后,经过调研获得了时间(天数)与销售单价(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图).
1.63 | 37.8 | 0.89 | 5.15 | 0.92 | 18.40 |
表中.
(1)根据散点图判断,与哪一个更适合作价格关于时间的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程.
(3)若该产品的日销售量(件)与时间的函数关系为,求该产品投放市场第几天的销售额最高?最高为多少元?
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三角形ABC中,,AC=1,以B为直角顶点作等腰直角三角形BCD(A、D在BC两侧),当∠BAC变化时,线段AD的长度最大值为._______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率是,A、B分别为椭圆的左顶点、上顶点,原点O到AB所在直线的距离为.
(I)求椭圆C的方程;
(Ⅱ)已知直线与椭圆相交于不同的两点M,N(均不是长轴的端点),,垂足为H,且,求证:直线恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率,;
(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出的所有可能值,并估计大于零的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点为抛物线外一点,过点作抛物线的两条切线,,切点分别为,.
(Ⅰ)若点为,求直线的方程;
(Ⅱ)若点为圆上的点,记两切线,的斜率分别为,,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)表示所取3张卡片上的数字的中位数,求的分布列与数学期望.
(注:若三个数满足,则称为这三个数的中位数).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com