【题目】如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的余弦值.
【答案】(I)证明见解析(Ⅱ)
【解析】
(I)由BF⊥平面ACE,可得,再由二面角D—AB—E是直二面角,可得平面平面,结合,可得,进而可证明AE⊥平面BCE;
(Ⅱ)建立如图所示的空间直角坐标系O—xyz,然后利用空间向量法可求出二面角B—AC—E.
(I)平面,
二面角D—AB—E是直二面角,∴平面平面,
又,∴平面,,
又平面,∴AE⊥平面BCE.
(Ⅱ)以线段AB的中点为原点O,OE所在直线为x轴,AB所在直线为y轴,
过O点平行于AD的直线为z轴,建立如图所示的空间直角坐标系O—xyz.
面BCE,BE平面BCE,,
在中,,O为AB的中点,
,
,设平面AEC的一个法向量为,
则即,解得,
令得是平面AEC的一个法向量,
又平面BAC的一个法向量为,
,
∴二面角B—AC—E的余弦值为.
科目:高中数学 来源: 题型:
【题目】某单位安排位员工在春节期间大年初一到初七值班,每人值班天,若位员工中的甲、乙排在相邻的两天,丙不排在初一,丁不排在初七,则不同的安排方案共有_______
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图像与x轴相邻的两交点间的距离为,把函数的图像沿x轴向左平移个单位,得到函数的图像,关于函数,现有如下命题:
①在上是减函数;②其图像关于点对称;
③函数是奇函数;④当时,函数的值域为.
其中真命题的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图 所示,一条直角走廊宽为,
(1)若位于水平地面上的一根铁棒在此直角走廊内,且,试求铁棒的长;
(2)若一根铁棒能水平地通过此直角走廊,求此铁棒的最大长度;
(3)现有一辆转动灵活的平板车,其平板面是矩形,它的宽为如图2.平板车若想顺利通过直角走廊,其长度不能超过多少米?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中以为极点,轴非负半轴为极轴建立坐标系圆,直线的极坐标方程分别
为,.
(Ⅰ)求与交点的极坐标;
(Ⅱ)设为的圆心, 为与交点连线的中点,已知直线的参数方程为
(为参数),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】莱市在市内主于道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为,半径为,并与北京路一边所在直线相切于点.点为上半圆弧上一点,过点作的垂线,垂足为点.市园林局计划在内进行绿化,设的面积为(单位:),(单位:弧度).
(1)将表示为的函数;
(2)当绿化面积最大时,试确定点的位置,并求最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com