精英家教网 > 高中数学 > 题目详情

【题目】现有1 000根某品种的棉花纤维,从中随机抽取50根,纤维长度(单位:mm)的数据分组及各组的频数见右上表,据此估计这1 000根中纤维长度不小于37.5 mm的根数是

纤维长度

频数

[22.5,25.5)

3

[25.5,28.5)

8

[28.5,31.5)

9

[31.5,34.5)

11

[34.5,37.5)

10

[37.5,40.5)

5

[40.5,43.5]

4

【答案】180
【解析】解:由图可知,棉花纤维的长度不小于37.5mm段的频率为 ,则1 000根中纤维长度不小于37.5 mm的根数是1000×(0.1+0.08)=180. 故填:180.
由图分析易得棉花纤维的长度不小于37.5 mm段的频率,根据频率与频数的关系可得1000根棉花纤维中纤维长度不小于37.5mm的根数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=xex
(1)求f(x)的极值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的部分图象如图所示.

(1)求函数f(x)的解析式;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,直线的参数方程为 (t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为
(1)求曲线C的直角坐标方程,并指出其表示何种曲线;
(2)设直线l与曲线C交于A,B两点,若点P的直角坐标为(1,0),试求当 时,|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过 x 的部分按平价收费,超出 x 的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了 100 位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中 a 的值;
(Ⅱ)若该市政府希望使 85%的居民每月的用水量不超过标准 x(吨),估计 x 的值,并说明理由;
(Ⅲ)已知平价收费标准为 4 元/吨,议价收费标准为 8元/吨.当 x=3时,估计该市居民的月平均水费.(同一组中的数据用该组区间的中点值代替)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中e为自然对数的底数.
(1)求函数 在x 1处的切线方程;
(2)若存在 ,使得 成立,其中 为常数,
求证:
(3)若对任意的 ,不等式 恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且a1=a2=1,{nSn+(n+2)an}为等差数列,则a2017=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+x2
(1)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;
(2)在(1)的条件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的极小值;
(3)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0 , F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+m|x+a|. (Ⅰ)当m=a=﹣1时,求不等式f(x)≥x的解集;
(Ⅱ)不等式f(x)≥2(0<m<1)恒成立时,实数a的取值范围是{a|a≤﹣3或a≥3},求实数m的集合.

查看答案和解析>>

同步练习册答案