精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex-1,g(x)=
x
+x
,其中e是自然对数的底,e=2.71828….
(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;
(2)求方程f(x)=g(x)根的个数,并说明理由;
(3)若数列{an}(n∈N*)满足a1=a(a>0)(a为常数),f(an+1)=g(an),证明:存在常数M,使得对于任意n∈N*,都有an≤M.
(1)证明:由h(x)=f(x)-g(x)=ex-1-
x
-x
,得:
h(1)=e-3<0,h(2)=e2-2-
2
>0,
所以函数h(x)在区间(1,2)上有零点.
(2)由(1)得:h(x)=ex-1-
x
-x

g(x)=
x
+x
知,x∈[0,+∞),而h(0)=0,则x=0为h(x)的一个零点,且h(x)在(1,2)内有零点,
因此h(x)至少有两个零点.
所以h′(x)=ex-
1
2
x-
1
2
-1,记φ(x)=ex-
1
2
x-
1
2
-1,则φ′(x)=ex+
1
4
x-
3
2

当x∈(0,+∞)时,φ'(x)>0,因此φ(x)在(0,+∞)上单调递增,则φ(x)在(0,+∞)内至多只有一个零点.h(x)有且只有两个零点.
所以,方程f(x)=g(x)根的个数为2.
(3)记h(x)的正零点为x0,即ex0-1=x0+
x0

(1)当a<x0时,由a1=a,即a1<x0.而a23=a1+
a1
x0+
x0
=ex0-1,因此a2<x0,由此猜测:an<x0.下面用数学归纳法证明:
①当n=1时,a1<x0显然成立;
②假设当n=k(k≥1)时,有ak<x0成立,则当n=k+1时,由ak+13=ak+
ak
x0+
x0
=ex0-1知,ak+1<x0,因此,当n=k+1时,ak+1<x0成立.
故对任意的n∈N*,an<x0成立.
(2)当a≥x0时,由(1)知,h(x)在(x0,+∞)上单调递增.则h(a)≥h(x0)=0,即a3≥a+
a
.从而a23=a1+
a1
=a+
a
a3
,即a2≤a,由此猜测:an≤a.下面用数学归纳法证明:
①当n=1时,a1≤a显然成立;
②假设当n=k(k≥1)时,有ak≤a成立,则当n=k+1时,由ak+13=ak+
ak
≤a+
a
a3
知,ak+1≤a,因此,当n=k+1时,ak+1≤a成立.
故对任意的n∈N*,an≤a成立.
综上所述,存在常数M=max{x0,a},使得对于任意的n∈N*,都有an≤M.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(cosx+sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn}.求证:数列{f(xn)}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知函数f(x)=e|lnx|-|x-
1
x
|,则函数y=f(x+1)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(x2+x+1).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案