精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A1B1C1D1的棱长为1,点M是对角线A1B上的动点,则AM+MD1的最小值为(  )
精英家教网
A、
2+
2
B、2+
2
C、
2
+
6
D、2
分析:欲求AM+MD1的最小值,先将展开平面ABA1和平面BCDD1A1放在同一个平面上,再利用两点之间线段最短,结合解三角形即可.
解答:精英家教网解:将平面ABA1和平面BCDD1A1放在同一个平面上,如图,
则AM+MD1的最小值即为线段AD1
在直角三角形AED1 中,
AE=
2
2
+1
,ED1=
2
2

∴AD1=
AE2+ED12
=
(
2
2
+1)
2
+(
2
2
)
2
=
2+
2

故选A.
点评:本题主要考查了棱柱的结构特征、点、线、面间的距离计算,考查空间想象能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积.
(1) 如果球O和这个正方体的六个面都相切,则有S=
 

(2)如果球O和这个正方体的各条棱都相切,则有S=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E,F分别为BB1和A1D1的中点.证明:向量
A1B
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线B1B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,则下列各组中的四个点不在同一个平面上的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
13
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

同步练习册答案