【题目】已知在平面直角坐标系中,,(),其中数列、都是递增数列.
(1)若,,判断直线与是否平行;
(2)若数列、都是正项等差数列,它们的公差分别为、,设四边形的面积为(),求证:也是等差数列;
(3)若,(),,记直线的斜率为,数列前8项依次递减,求满足条件的数列的个数.
【答案】(1)不平行;(2)证明见解析;(3)9个.
【解析】
(1)确定A1(3,0),B1(0,4),A2(5,0),B2(0,7),求得斜率,可得A1B1与A2B2不平行;
(2)因为{an},{bn}为等差数列,设它们的公差分别为d1和d2,则an=a1+(n﹣1)d1,bn=b1+(n﹣1)d2,an+1=a1+nd1,bn+1=b1+nd2,从而可得,进而可证明数列{Sn}是等差数列;
(3)求得,根据数列{kn}前8项依次递减,可得an﹣a+b<0对1≤n≤7(n∈Z)成立,根据数列{bn}是递增数列,故只要n=7时,7a﹣a+b=6a+b<0即可,关键b1=a+b≥﹣12,联立不等式作出可行域,即可得到结论.
(1)由题意A1(3,0),B1(0,4),A2(5,0),B2(0,7),
所以,
,
因为,所以A1B1与A2B2不平行.
(2)因为{an},{bn}为等差数列,设它们的公差分别为d1和d2,
则an=a1+(n﹣1)d1,bn=b1+(n﹣1)d2,an+1=a1+nd1,bn+1=b1+nd2
由题意
所以[b1+(n﹣1)d2]}
,
所以,
所以Sn+1﹣Sn=d1d2是与n无关的常数,
所以数列{Sn}是等差数列
(3)因为An(an,0),Bn(0,bn),
所以
又数列{kn}前8项依次递减,
所以0,
对1≤n≤7(n∈Z)成立,
即an﹣a+b<0对1≤n≤7(n∈Z)成立.
又数列{bn}是递增数列,所以a>0,故只要n=7时,7a﹣a+b=6a+b<0即可.
又b1=a+b≥﹣12,联立不等式作出可行域(如右图所示),易得a=1或2,
当a=1时,﹣13≤b<﹣6即b=﹣13,﹣12,﹣11,﹣10,﹣9,﹣8,﹣7,有7个解;
当a=2时,﹣14≤b<﹣12,即b=﹣14,﹣13,有2个解,所以数列{bn}共有9个.
科目:高中数学 来源: 题型:
【题目】已知变量、之间的线性回归方程为,且变量、之间的一-组相关数据如下表所示,则下列说法错误的是( )
A.可以预测,当时,B.
C.变量之间呈负相关关系D.该回归直线必过点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数的图像向右平移个单位后得到函数,则具有性质( )
A.最大值为1,图像关于直线对称
B.周期为,图像关于点对称
C.在上单调递增,为偶函数
D.在上单调递减,为奇函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某校九年级400名学生的体质情况,随机抽查了20名学生,测试1 min仰卧起坐的成绩(次数),测试成绩如下:
30 35 32 33 28 36 34 28 25 40
28 32 30 42 37 36 33 31 26 24
(1)20名学生的平均成绩是多少?标准差是多少?
(2)次数位于与之间有多位同学?所占的百分比是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年某地遭遇严重干旱,某乡计划向上级申请支援,为上报需水量,乡长事先抽样调查100户村民的月均用水量,得到这100户村民月均用水量(单位:t)的频率分布表如下:
月均用水量分组 | 频数 | 频率 |
12 | ||
40 | ||
0.18 | ||
6 | ||
合计 | 100 | 1.00 |
(1)请完成该频率分布表,并画出相对应的频率分布直方图.
(2)样本的中位数是多少?
(3)已知上级将按每户月均用水量向该乡调水,若该乡共有1200户,请估计上级支援该乡的月调水量是多少吨.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点M到定点F1(-2,0)和F2(2,0)的距离之和为.
(1)求动点M轨迹C的方程;
(2)设N(0,2),过点P(-1,-2)作直线l,交椭圆C于不同于N的A,B两点,直线NA,NB的斜率分别为k1,k2,问k1+k2是否为定值?若是的求出这个值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=,若g(x)=f(x)-a恰好有3个零点,则a的取值范围为( )
A. B. C. D.
【答案】D
【解析】
恰好有3个零点, 等价于的图象有三个不同的交点,
作出的图象,根据数形结合可得结果.
恰好有3个零点,
等价于有三个根,
等价于的图象有三个不同的交点,
作出的图象,如图,
由图可知,
当时,的图象有三个交点,
即当时,恰好有3个零点,
所以,的取值范围是,故选D.
【点睛】
本题主要考查函数的零点与分段函数的性质,属于难题. 函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.
【题型】单选题
【结束】
13
【题目】设集合A={0,log3(a+1)},B={a,a+b}若A∩B={1},则b=______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com