精英家教网 > 高中数学 > 题目详情
如图所示,F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点(1,
3
2
)到F1、F2两点的距离之和为4.
(1)求椭圆C的方程和焦点坐标;
(2)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求弦长|PQ|.
(1)由题设知:2a=4,即a=2,
将点(1,
3
2
)代入椭圆方程得
1
22
+
(
3
2
)2
b2
=1

解得b2=3
∴c2=a2-b2=4-3=1,故椭圆方程为
x2
4
+
y2
3
=1

焦点F1、F2的坐标分别为(-1,0)和(1,0)
(2)由(Ⅰ)知A(-2,0),B(0,
3
),∴kPQ=kAB=
3
2

∴PQ所在直线方程为y=
3
2
(x-1),
y=
3
2
(x-1)
x2
4
+
y2
3
=1
得2x2-2x-3=0,
设P(x1,y1),Q(x2,y2),则x1+x2=1,x1-x2=-
3
2

弦长|PQ|=
1+k2
(x1+x2)2-4x1x2
=
7
2
7
=
7
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点M是曲线C上任一点,点M到点F(1,0)的距离比到y轴的距离多1.
(1)求曲线C的方程;
(2)过点P(0,2)的直线L交曲线C于A、B两点,若以AB为直径的圆经过原点O,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
16
+
y2
9
=1
的左、右焦点分别为F1、F2,过焦点F1的直线交椭圆于A,B两点,若△ABF2的内切圆的面积为π.A,B两点的坐标分别为(x1,y1)和(x2,y2),则|y2-y1|的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的顶点在原点,经过点A(1,2),其焦点F在y轴上,直线y=kx+2交抛物线C于A,B两点,M是线段AB的中点,过M作x轴的垂线交抛物线C于点N.
(Ⅰ)求抛物线C的方程;
(Ⅱ)证明:抛物线C在点N处的切线与AB平行.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线C1:y2=8x与双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)
有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且|AF2|=5.
(Ⅰ)求双曲线C2的方程;
(Ⅱ)以F1为圆心的圆M与双曲线的一条渐近线相切,圆N:(x-2)2+y2=1.平面上有点P满足:存在过点P的无穷多对互相垂直的直线l1,l2,它们分别与圆M,N相交,且直线l1被圆M截得的弦长与直线l2被圆N截得的弦长的比为
3
:1
,试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:已知直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1).
(1)求p的值;
(2)求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线与椭圆
x2
9
+
y2
4
=1
交于A,B两点,设线段AB的中点为P,若直线的斜率为k1,直线OP的斜率为k2,则k1k2等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l:y=k(x-
2
)
与双曲线x2-y2=1仅有一个公共点,则实数k的值为(  )
A.1B.-1C.1或-1D.1或-1或0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点(1,
3
2
)
到F1、F2两点的距离之和为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求△F1PQ的面积.

查看答案和解析>>

同步练习册答案