精英家教网 > 高中数学 > 题目详情
2.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,过F1作圆:x2+y2=$\frac{3}{4}$c2的切线,交双曲线左右支分别于A,B两点且|$\overrightarrow{BA}$|=|$\overrightarrow{B{F}_{2}}$|,则双曲线的离心率等于(  )
A.$\sqrt{3}$+1B.$\frac{\sqrt{15}+\sqrt{3}}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{13}+1}{2}$

分析 由题意,设直线的斜率为$\sqrt{3}$,直线的倾斜角为60°,利用过F1作圆:x2+y2=$\frac{3}{4}$c2的切线,交双曲线左右支分别于A,B两点且|$\overrightarrow{BA}$|=|$\overrightarrow{B{F}_{2}}$|,可得|AF1|=2a,求出A(a-c,$\sqrt{3}$a),代入双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1可得e的方程,代入验算可得结论.

解答 解:由题意,设直线的斜率为$\sqrt{3}$,直线的倾斜角为60°,
∵过F1作圆:x2+y2=$\frac{3}{4}$c2的切线,交双曲线左右支分别于A,B两点且|$\overrightarrow{BA}$|=|$\overrightarrow{B{F}_{2}}$|,
∴|AF1|=2a,
∴A(a-c,$\sqrt{3}$a),
代入双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1可得$\frac{(a-c)^{2}}{{a}^{2}}$-$\frac{3{a}^{2}}{{b}^{2}}$=1,
∴(e2-1)(e2-2e)=3
代入验算可得e=$\frac{\sqrt{13}+1}{2}$.
故选:D.

点评 本题考查直线与圆的位置关系,考查直线与双曲线的位置关系,考查双曲线的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图点A(0,0,a),在四面体ABCD中,AB⊥平面BCD,BC=CD,∠BCD=90°,∠ADB=30°,E,F分别是AC,AD的中点,求D,C,E,F这四点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的左焦点为F,上顶点为B.
(1)若直线FB的一个方向向量为(1,$\frac{\sqrt{3}}{3}$),求实数a的值;
(2)若a=$\sqrt{2}$,直线l:y=kx-2与椭圆C相交于M、N两点,且$\overrightarrow{FM}$•$\overrightarrow{FN}$=3,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数y=f(x)的值域为[$\frac{1}{2}$,3],则函数F(x)=f(x-1)+$\frac{1}{f(x-1)}$的值域是(  )
A.[$\frac{1}{2}$,3]B.[2,$\frac{10}{3}$]C.[$\frac{5}{2}$,$\frac{10}{3}$]D.[3,$\frac{10}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x0是函数f(x)=($\frac{1}{2}$)x-x的零点,且x1<x0,则f(x1)与0的大小关系是f(x1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:cos$\frac{4π}{3}$-tan(-$\frac{π}{4}$)+sin$\frac{3π}{2}$+(-2)°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某班同学要安排学校晚会的3个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,曲艺节目不排首尾,则不同排法的种数为(  )
A.144种B.336种C.408种D.480种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C的焦点分别为F1($-2\sqrt{2}$,0)、F2($2\sqrt{2}$,0),长轴长为6,设直线y=x+2交椭圆C于A、B两点.
(1)求椭圆的标准方程;
(2)求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如果函数y=y(x)由方程${∫}_{0}^{y}$etdt-${∫}_{0}^{x}$costdt=0所确定,则$\frac{dy}{dx}$=$\frac{cosx}{1+sinx}$.

查看答案和解析>>

同步练习册答案