精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为(t为参数).直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

【答案】(1)曲线的直角坐标方程为直线的普通方程为.

(2)

【解析】

(1)利用代入法消去参数方程中的参数,可得直线的普通方程,极坐标方程两边同乘以利用 即可得曲线的直角坐标方程;(2)直线的参数方程代入圆的直角坐标方程根据直线参数方程的几何意义利用韦达定理可得结果.

(1)由,得

所以曲线的直角坐标方程为

直线的普通方程为.

(2)将直线的参数方程代入并化简、整理,

. 因为直线与曲线交于两点。

所以,解得.

由根与系数的关系,得.

因为点的直角坐标为,在直线.所以

解得,此时满足.,故..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经观测,某昆虫的产卵数与温度有关,现将收集到的温度和产卵数10组观测数据作了初步处理,得到如图的散点图及一些统计量表.

275

731.1

21.7

150

2368.36

30

表中

1)根据散点图判断,哪一个适宜作为之间的回归方程模型?(给出判断即可,不必说明理由)

2)根据(1)的判断结果及表中数据.

①试求关于回归方程;

②已知用人工培养该昆虫的成本与温度和产卵数的关系为,当温度取整数)为何值时,培养成本的预报值最小?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水果经销商为了对一批刚上市水果进行合理定价,将该水果按事先拟定的价格进行试销,得到一组销售数据,如表所示:

试销单价(元/公斤)

16

17

18

19

20

日销售量(公斤)

168

146

120

90

56

1)已知变量具有线性相关关系,求该水果日销售量(公斤)关于试销单价(元/公斤)的线性回归方程,并据此分析销售单价时,日销售量的变化情况;

2)若该水果进价为每公斤元,预计在今后的销售中,日销售量和售价仍然服从(1)中的线性相关关系,该水果经销商如果想获得最大的日销售利润,此水果的售价应定为多少元?

(参考数据及公式:,线性回归方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在新型冠状病毒疫情期间,商业活动受到很大影响某小型零售连锁店总部统计了本地区50家加盟店2月份的零售情况,统计数据如图所示.据估计,平均销售收入比去年同期下降40%,则去年2月份这50家加盟店的平均销售收入约为(

A.6.6万元B.3.96万元C.9.9万元D.7.92万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】11个兴趣班,若干学生参与(可重复参与),每个兴趣班人数相同(招满,人数未知).已知任意九个兴趣班包括了全体学生,而任意八个兴趣班没有包括全体学生求学生总人数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:

经济损失

4000元以下

经济损失

4000元以上

合计

捐款超过500元

30

捐款低于500元

6

合计

(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?

(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的数学期望.

附:临界值表

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数,则对于函数有下列四个命题:

命题1:存在实数使得函数没有零点

命题2:存在实数使得函数个零点

命题3:存在实数使得函数个零点

命题4:存在实数使得函数个零点

其中,正确的命题的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在人群流量较大的街道,有一中年人吆喝送钱,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:

摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.

1)摸出的3个球为白球的概率是多少?

2)摸出的3个球为2个黄球1个白球的概率是多少?

3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为三维空间中个点组成的有限集,其中任意四点不在一个平面上,将集合中的点染成白色或黑色,使得任意一个与集合至少交于四个点的球面具有这样的性质:这些交点中恰有一半的点为白色的.证明:集合中所有的点均在一个球面上,

查看答案和解析>>

同步练习册答案