精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足为等比数列,且

1)求

2)设,记数列的前项和为

①求

②求正整数 k,使得对任意均有.

【答案】1an2n(nN*)bnn(n1)(nN*).(2(i) Sn (nN*)(ii)k4.

【解析】解:(1)由题意a1a2a3…an=,b3-b2=6,知a3=()b3-b2=8. 设数列{an}的公比为q,又由a1=2,得 ,q=2(q=-2舍去),所以数列{an}的通项为an=2n(n∈N*).

所以,a1a2a3…an=2=()n(n+1).

故数列{bn}的通项为bn=n(n+1)(n∈N*).

(2)(i)由(1)知cn= (n∈N*).所以Sn= (n∈N*).

(ii)因为c1=0,c2>0,c3>0,c4>0,当n≥5时,cn=

所以,当n≥5时,cn<0.

综上,若对任意n∈N*恒有Sk≥Sn,则k=4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆经过,圆心在直线上,过点,且斜率为的直线交圆相交于两点.

(Ⅰ)求圆的方程;

(Ⅱ)(i)请问是否为定值.若是,请求出该定值,若不是,请说明理由;

(ii)若为坐标原点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车入住泉州一周年以来,因其“绿色出行,低碳环保”的理念而备受人们的喜爱,值此周年之际,某机构为了了解共享单车使用者的年龄段,使用频率、满意度等三个方面的信息,在全市范围内发放份调查问卷,回收到有效问卷份,现从中随机抽取份,分别对使用者的年龄段、~岁使用者的使用频率、~岁使用者的满意度进行汇总,得到如下三个表格:

(Ⅰ)依据上述表格完成下列三个统计图形:

(Ⅱ)某城区现有常住人口万,请用样本估计总体的思想,试估计年龄在岁~岁之间,每月使用共享单车在~次的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ) 部分图象如图所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)设g(x)=f(x)﹣cos2x,求函数g(x)在区间 上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解不等式: ≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差为d,前n项和为Sn , 等比数列{bn}的公比为q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式
(2)当d>1时,记cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinx+cosx.
(1)求f(x)的最大值;
(2)设g(x)=f(x)cosx,x∈[0, ],求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙O:x2+y2=1和点M(4,2).
(Ⅰ)过点M向⊙O引切线l,求直线l的方程;
(Ⅱ)求以点M为圆心,且被直线y=2x﹣1截得的弦长为4的⊙M的方程;
(Ⅲ)设P为(Ⅱ)中⊙M上任一点,过点P向⊙O引切线,切点为Q.试探究:平面内是否存在一定点R,使得 为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱中,侧棱 分别为棱的中点, 分别为线段的中点.

(1)求证:直线平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案