精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,底面是边长为4的正三角形,底面,点分别为的中点.

(1)求证:平面平面

(2)在线段上是否存在点,使得直线与平面所成的角的正弦值为?若存在,确定点的位置;若不存在,请说明理由.

【答案】(1)见解析(2)见解析

【解析】

(1)先证明,可得平面从而平面平面

(2)由题意可知两两垂直,分别以方向为轴建立坐标系,求出平面的法向量及,代入公式可得未知量的方程,解之即可.

(1)证明:∵的中点,

平面平面,∴

平面

平面

∴平面平面

(2)如图,由(1)知,,点分别为的中点,

,∴,又

两两垂直,分别以方向为轴建立坐标系.

所以

,设平面的法向量,则

,令,则

由已知 (舍去)

故线段上存在点,使得直线与平面所成的角的正弦值为

此时为线段的中点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为.

(1)求的直角坐标方程;

(2)直线为参数)与曲线交于两点,与轴交于,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为“中学数学联赛”选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格,某校有900名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.

(1)求获得复赛资格应划定的最低分数线;

(2)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间各抽取多少人?

(3)从(2)抽取的7人中,选出4人参加全市座谈交流,设表示得分在中参加全市座谈交流的人数,学校打算给这4人一定的物质奖励,若该生分数在给予500元奖励,若该生分数在给予800元奖励,用Y表示学校发的奖金数额,求Y的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线的参数方程为:为参数,在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为:,直线与曲线交于AB两点,

求曲线的普通方程及的最小值;

若点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为,若向弦图内随机抛掷500颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为( )

A. 134 B. 67 C. 200 D. 250

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在区间上是增函数.

(1)求实数的值组成的集合

(2)设关于的方程的两个非零实根为试问:是否存在实数,使得不等式对任意 恒成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于随机变量及分布的说法正确的是(

A.抛掷均匀硬币一次,出现正面的次数是随机变量

B.某人射击时命中的概率为0.5,此人射击三次命中的次数服从两点分布

C.离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1

D.离散型随机变量的各个可能值表示的事件是彼此互斥的

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:

奖级

摸出红、蓝球个数

获奖金额

一等奖

31

200

二等奖

30

50

三等奖

21

10

其余情况无奖且每次摸奖最多只能获得一个奖级.

1)求摸奖者第一次摸球时恰好摸到1个红球的概率;

2)求摸奖者在一次摸奖中获奖金额的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是增函数.

求实数的值;

若函数有三个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案