精英家教网 > 高中数学 > 题目详情
20.面对某种流感病毒,各国医疗科研机构都在研究疫苗,现有A、B、C三个独立的研究机构在一定的时期研制出疫苗的概率分别为$\frac{1}{5}$、$\frac{1}{4}$、$\frac{1}{3}$.求:
(1)他们能研制出疫苗的概率;
(2)至多有一个机构研制出疫苗的概率.

分析 (1)设“A机购在一定时期研制出疫苗”为事件D,“B机购在一定时期研制出疫苗”为事件E,“C机购在一定时期研制出疫苗”为事件F,则P(D)=$\frac{1}{5}$,P(E)=$\frac{1}{4}$,P(F)=$\frac{1}{3}$,利用对立事件概率计算公式能求出他们能研制出疫苗的概率.
(2)至多有一个机构研制出疫苗的概率为P(D$\overline{E}\overline{F}$∪$\overline{D}E\overline{F}$∪$\overline{D}\overline{E}F$∪$\overline{D}\overline{E}\overline{F}$)=P(D$\overline{E}\overline{F}$)=P($\overline{D}E\overline{F}$)+P($\overline{D}\overline{E}F$)+P($\overline{D}\overline{E}\overline{F}$),由此能求出结果.

解答 解:(1)设“A机购在一定时期研制出疫苗”为事件D,“B机购在一定时期研制出疫苗”为事件E,
“C机购在一定时期研制出疫苗”为事件F,
则P(D)=$\frac{1}{5}$,P(E)=$\frac{1}{4}$,P(F)=$\frac{1}{3}$,
∴他们能研制出疫苗的概率p=1-P($\overline{D}\overline{E}\overline{F}$)=1-(1-$\frac{1}{5}$)×(1-$\frac{1}{4}$)×(1-$\frac{1}{3}$)=$\frac{3}{5}$.
(2)至多有一个机构研制出疫苗的概率为:
P(D$\overline{E}\overline{F}$∪$\overline{D}E\overline{F}$∪$\overline{D}\overline{E}F$∪$\overline{D}\overline{E}\overline{F}$)=P(D$\overline{E}\overline{F}$)=P($\overline{D}E\overline{F}$)+P($\overline{D}\overline{E}F$)+P($\overline{D}\overline{E}\overline{F}$)
=$\frac{1}{5}×\frac{3}{4}×\frac{2}{3}+\frac{4}{5}×\frac{1}{4}×\frac{2}{3}+\frac{4}{5}×\frac{3}{4}×\frac{1}{3}$+$\frac{4}{5}×\frac{3}{4}×\frac{2}{3}$=$\frac{5}{6}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知a>0,函数$f(x)=\left\{{\begin{array}{l}{-\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}+ax-\frac{4}{3},x≤1}\\{(a-1)lnx+\frac{1}{2}{x^2}-ax,x>1}\end{array}}\right.$若f(x)在区间(-a,2a)上单调递增,则实数a的取值范围是(0,$\frac{10}{9}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一块石材表示的几何体的三视图如图所示,则它的体积等于(  )
A.96B.192C.288D.576

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,则x2+y2的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和Sn=-2n2-n
(1)求通项an的表达式;
(2)说明{an}是一个怎样的等差数列;
(3)求a1+a3+a5+…+a25的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在正三棱锥P-ABC中,D、E分别为AB、BC的中点,有下列三个论断:①面APC⊥面PBD;②AC∥面PDE;③AB⊥面PDC,其中正确论断的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于顶点在原点的抛物线,给出下列条件;
(1)焦点在y轴正半轴上;
(2)焦点在x轴正半轴上;
(3)抛物线上横坐标为1的点到焦点的距离等于6;
(4)抛物线的准线方程为$x=-\frac{5}{2}$
其中适合抛物线y2=10x的条件是(要求填写合适条件的序号)(2)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.幂函数y=f(x)的图象过点A(4,2),则函数y=f(x)的反函数为y=x2,x≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x=$\frac{1+yi}{1+i}$,其中i是虚数单位,x、y是实数,则x+y=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案