精英家教网 > 高中数学 > 题目详情

【题目】某高中志愿者男志愿者5人,女志愿者3人,这些人要参加社区服务工作.从这些人中随机抽取4人负责文明宣传工作,另外4人负责卫生服务工作.

(Ⅰ)设为事件;“负责文明宣传工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件发生的概率;

(Ⅱ)设表示参加文明宣传工作的女志愿者人数,求随机变量的分布列与数学期望.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)从8人中随机抽取4人负责文明宣传的基本事件的总数为,事件包含基本事件的个数为,利用古典概型的计算公式,即可求解.

(Ⅱ)由题意,得到随机变量可取的值,求得相应的概率,得出相应的分布列,利用期望的公式,即可求解.

(Ⅰ)从8人中随机抽取4人负责文明宣传的基本事件的总数为,事件包含基本事件的个数为,则.

(Ⅱ)由题意知可取的值为:0,1,2,3.

因此的分布列为

0

1

2

3

的数学期望是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

1)若,求处的切线与两坐标轴围成的三角形的面积;

2)若上的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是由两个全等的菱形组成的空间图形,,∠BAF=∠ECD60°.

1)求证:

2)如果二面角BEFD的平面角为60°,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形中,,过分别作,垂足分别,已知,将梯形沿同侧折起,得空间几何体 ,如图

1,证明:平面

2,线段上存在一点,满足与平面所成角的正弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示:劳伦茨曲线为直线时,表示收入完全平等,劳伦茨曲线为折线时,表示收入完全不平等记区域为不平等区域,表示其面积,的面积.将,称为基尼系数.对于下列说法:

越小,则国民分配越公平;

②设劳伦茨曲线对应的函数为,则对,均有

③若某国家某年的劳伦茨曲线近似为,则

④若某国家某年的劳伦茨曲线近似为,则

其中不正确的是:(

A.①④B.②③C.①③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥CABNM中,四边形ABNM的边长均为2,△ABC为正三角形,MBMBNCEF分别为MNAC中点.

(Ⅰ)证明:MBAC

(Ⅱ)求直线EF与平面MBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省开展精准脱贫,携手同行的主题活动,某贫困县统计了100名基层干部走访贫困户的数量,并将走访数量分成5组,统计结果见下表.

走访数量区间

频数

频率

b

10

38

a

0.27

9

总计

100

1.00

1)求ab的值;

2)根据表中数据,估计这100名基层干部走访数量的中位数(精确到个位);

3)如果把走访贫困户不少于35户视为工作出色,按照分层抽样,从工作出色的基层干部中抽取4人,再从这4人中随机抽取2人,求其中有1人走访贫困户不少于45户的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】边长为2的等边和有一内角为的直角所在半平面构成的二面角,则下列不可能是线段的取值的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆中,的面积为1

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆上一点,是椭圆的左右两个焦点,直线分别交,是否存在点,使,若存在,求出点的横坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案