【题目】已知函数,其定义域为.(其中常数,是自然对数的底数)
(1)求函数的递增区间;
(2)若函数为定义域上的增函数,且,证明: .
【答案】(1)见解析(2)见解析
【解析】
(1)求得函数的导数,分类讨论,即可求解函数的单调区间;
(2)由题意,问题转化为,令,,
即证,根据函数的单调性,即可作出证明.
(1)易知,
①若,由解得,∴函数的递增区间为;
②若,则
1 | |||||
+ | 0 | - | 0 | + | |
↗ | 极大值 | ↘ | 极小值 | ↗ |
∴函数的递增区间为和;
③若,则,∴函数的递增区间为;
④若,则
1 | |||||
+ | 0 | - | 0 | + | |
↗ | 极大值 | ↘ | 极小值 | ↗ |
∴函数的递增区间为和;
综上,若,的递增区间为;
若,的递增区间为和;
若,函数的递增区间为;
若,函数的递增区间为和.
(2)∵函数为上的增函数,∴,即,
注意到,故,
∴不妨设,
欲证,只需证,只需证,
即证,即证,
令,,只需证,
∴ ,
下证,即证,
由熟知的不等式可知,
当时,即,
∴ ,
易知当时,,∴,
∴,
∴,即单调递增,即,从而得证.
科目:高中数学 来源: 题型:
【题目】已知无穷数列的前项中的最大项为,最小项为,设.
(1)若,求数列的通项公式;
(2)若,求数列的前项和;
(3)若数列是等差数列,求证:数列是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业接到生产3000台某产品的三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件),已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).
(1)设生产部件的人数为,分别写出完成三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】地球的公转轨道可以看作是以太阳为一个焦点的椭圆,根据开普勒行星运动第二定律,可知太阳和地球的连线在相等的时间内扫过相等的面积,某同学结合物理和地理知识得到以下结论:①地球到太阳的距离取得最小值和最大值时,地球分别位于图中点和点;②已知地球公转轨道的长半轴长约为千米,短半轴长约为千米,则该椭圆的离心率约为.因此该椭圆近似于圆形:③已知我国每逢春分(月日前后)和秋分(月日前后),地球会分别运行至图中点和点,则由此可知我国每年的夏半年(春分至秋分)比冬半年(当年秋分至次年春分)要少几天.以上结论正确的是( )
A.①B.①②C.②③D.①③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com