精英家教网 > 高中数学 > 题目详情

【题目】已知可导函数fx)的定义域为,且满足,则对任意的,“”是“”的( )

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

【答案】C

【解析】

由题可得函数fx)关于直线x=2对称,且在单调递减,在单调递增,从充分性,必要性两方面分别说明得出对任意的,“”是“”的充要条件.

fx)满足fx+4)=f(﹣x),∴函数fx)关于直线x=2对称,则

,∴时,,函数fx)单调递减;时,,函数fx)单调递增.

先看充分性:

,符合,得

,则,不符合

故对任意的,“”是“”的充分条件;

再看必要性:

,得

,则得,有

,则,则有

故对任意的,“”是“”的必要条件;

综上,对任意的,“”是“”的充要条件

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知圆柱内有一个三棱锥为圆柱的一条母线,为下底面圆的直径,

(Ⅰ)在圆柱的上底面圆内是否存在一点,使得平面?证明你的结论.

(Ⅱ)设点为棱的中点,,求四棱锥体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρsin2θ8cosθ0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在直角坐标系中,倾斜角为α的直线l过点P(20)

(1)写出曲线C的直角坐标方程和直线l的参数方程;

(2)设点Q与点G的极坐标分别为(2π),若直线l经过点Q,且与曲线C相交于AB两点,求△GAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.

1)依据数据的散点图可以看出,可用线性回归模型拟合的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);

2)求关于的回归方程,并预测液体肥料每亩使用量为千克时,西红柿亩产量的增加量约为多少?

附:相关系数公式,回归方程中斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】瑞士数学家、物理学家欧拉发现任一凸多面体(即多面体内任意两点的连线都被完全包含在该多面体中,直观上讲是指没有凹陷或孔洞的多面体)的顶点数V棱数E及面数F满足等式,这个等式称为欧拉多面体公式,被认为是数学领域最漂亮、简洁的公式之一,现实生活中存在很多奇妙的几何体,现代足球的外观即取自一种不完全正多面体,它是由m块黑色正五边形面料和块白色正六边形面料构成的.则

A.20B.18C.14D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知可导函数fx)的定义域为,且满足,则对任意的,“”是“”的( )

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为实数.

1)求的单调区间;

2)若,则当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】产能利用率是工业总产出对生产设备的比率,反映了实际生产能力到底有多少在运转发挥生产作用.汽车制造业的产能利用率的正常值区间为,称为“安全线”.如图是2017年第3季度到2019年第4季度的中国汽车制造业的产能利用率的统计图.以下结论正确的是(

A.10个季度中,汽车产能利用率低于“安全线”的季度有5

B.10个季度中,汽车产能利用率的中位数为

C.20184个季度的汽车产能利用率的平均数为

D.与上一季度相比,汽车产能利用率变化最大的是2019年第4季度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春秋以前中国已有“抱瓮而出灌”的原始提灌方式,使用提水吊杆——桔槔,后发展成辘轳.19世纪末,由于电动机的发明,离心泵得到了广泛应用,为发展机械提水灌溉提供了条件.图形如图所示为灌溉抽水管道在等高图的上垂直投影,在A处测得B处的仰角为37度,在A处测得C处的仰角为45度,在B处测得C处的仰角为53度,A点所在等高线值为20米,若BC管道长为50米,则B点所在等高线值为( )(参考数据

A.30B.50C.60D.70

查看答案和解析>>

同步练习册答案