精英家教网 > 高中数学 > 题目详情

如图所示,已知在圆锥SO中,底面半径r=1,母线长l=4,M为母线SA上的一个点,且SMx,从点M拉一根绳子,围绕圆锥侧面转到点A,求:

(1)设f(x)为绳子最短长度的平方,求f(x)表达式;
(2)绳子最短时,顶点到绳子的最短距离;
(3)f(x)的最大值.

(1)f(x)=AM2x2+16(0≤x≤4)(2)(3)32

解析试题分析:将圆锥的侧面沿SA展开在平面上,如图,则该展开图为扇形,且弧AA′的长度L就是⊙O的周长,
L=2πr=2π.∴∠ASA′=×360°=×360°=90°,
(1)由题意知,绳长的最小值为展开图中的AM,其值为AM (0≤x≤4),
f(x)=AM2x2+16(0≤x≤4).
(2)绳子最短时,在展开图中作SRAM,垂足为R,则SR的长度为顶点S到绳子的最短距离.在△SAM中,∵SSAMSA·SMAM· SR
SR (0≤x≤4).
(3)∵f(x)=x2+16(0≤x≤4)是增函数,∴f(x)的最大值为f(4)=32.
考点:本小题主要考查扇形的弧长、面积公式等的应用,考查学生的运算求解能力.
点评:解决此类问题的关键是正确转化,将所要求解的问题转化为熟悉的数学问题进行解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,斜三棱柱ABC-A'B'C'中,底面是边长为a的正三角形,侧棱长为b,侧棱AA'与底面相邻两边AB,AC都成45°角.

(Ⅰ)求此斜三棱柱的表面积.
(Ⅱ)求三棱锥B'-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在三棱柱中,侧棱底面,的中点, ,.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是菱形.的中点.

(1)求证:∥平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱中,侧面是边长为2的正方形,的中点,在棱上.

(1)当时,求三棱锥的体积.
(2)当点使得最小时,判断直线是否垂直,并证明结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)如图所示,三棱柱A1B1C1—ABC的三视图中,正(主)视图和侧(左)视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.

(1)求证:B1C∥平面AC1M;
(2)求证:平面AC1M⊥平面AA1B1B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某多面体的直观图及三视图如图所示: E,F分别为PC,BD的中点

(1)求证:
(2)求证:
(3)求此多面体的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,四棱锥的底面是菱形, 是的中点, 的中点.

(Ⅰ)求证:面⊥面; 
(Ⅱ)求证:∥面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分) 在长方体中,分别是的中点,
.
(Ⅰ)求证://平面
(Ⅱ)在线段上是否存在点,使直线垂直,
如果存在,求线段的长,如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案