精英家教网 > 高中数学 > 题目详情

【题目】某校从参加高三模拟考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求分数在内的频率,补全这个频率分布直方图,并据此估计本次考试的平均分;

(2)用分层抽样的方法,在分数段为的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段内的概率

【答案】(1)详见解析(2)

【解析】

1)首先可以计算出除了之外的其他分数段的频率,然后计算出分数在内的频率,再用频率除以组距即可,然后用每一分数段的中间数乘以每一分数段的概率再相加即可得出平均分;

2)首先算出在以及两个分数段中抽取的人数,然后列出从中任取2个的所有可能的事件,并找出满足题目要求的事件,即可得出结果。

(1)分数在内的频率为(直方图略),平均分为:

(2)由题意,分数段的人数为:人,

分数段的人数为:人,

因为用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,抽样比,所以需在分数段内抽取人,并分别记为

分数段内抽取人并分别记为

设“从样本中任取2人,至多有1人在分数段内”为事件A,

则基本事件有:

共15种.

事件A包含的基本事件有:(

种,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率,左焦点为,右顶点为,过点的直线交椭圆于两点,若直线垂直于轴时,有.

(1)求椭圆的方程;

(2)设直线 上两点 关于轴对称,直线与椭圆相交于点异于点),直线轴相交于点.若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和满足:,数列满足:对任意.

1)求数列与数列的通项公式;

2)记,数列的前项和为,证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论中不一定正确的是(

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的20%

C.互联网行业中从事运营岗位的人数90后比80后多

D.互联网行业中从事运营岗位的人数90后比80前多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1时,求上的单调区间;

2 均恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖励金额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:,其中哪个模型能符合公司的要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照《国务院关于印发十三五节能减排综合工作方案的通知》(国发〔201674号)的要求,到2020年,全国二氧化硫排放总量要控制在1580万吨以内,要比2015年下降15%.假设十三五期间每一年二氧化硫排放总量下降的百分比都相等,2015年后第年的二氧化硫律放总量最大值为万吨.

1)求的解析式;

2)求2019年全国二氧化赖持放总量要控制在多少万晚以内(精确到1万吨).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,底面是边长为2的正三角形,侧棱长为的中点

1)若,证明:平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】因客流量临时增大,某鞋店拟用一个高为50(即)的平面镜自制一个竖直摆放的简易鞋镜,根据经验:一般顾客的眼睛到地面的距离为)在区间内,设支架高为,顾客可视的镜像范围为(如图所示),记的长度为).

(I)当时,试求关于的函数关系式和的最大值;

(II)当顾客的鞋在镜中的像满足不等关系(不计鞋长)时,称顾客可在镜中看到自己的鞋,若使一般顾客都能在镜中看到自己的鞋,试求的取值范围.

查看答案和解析>>

同步练习册答案