精英家教网 > 高中数学 > 题目详情

【题目】已知的内角的对边分别为,且满足

(Ⅰ)求角

(Ⅱ)向量,若函数的图象关于直线对称,求角

【答案】I;II

【解析】试题分析:

(I)根据同角的基本关系可知, 再由正弦定理和余弦定理即可求出,再根据,即可求出角的值;(II)解法一:根据数量积公式和恒等变换可知,其中,所以的图象关于直线对称,可得,在根据,即,在由(I)得,可得,由此即可求出结果.

解法二:同方法一,可得的图象关于直线对称,可得,即, 然后再同方法一即可求出结果.

试题解析:

(I)由已知得:

由正弦定理得:

由余弦定理可得.

.

(II)解法一:

其中

的图象关于直线对称,∴

,即

由(I)得

,解得

解法二:

的图象关于直线对称,∴

由(I)得,∴

解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线在点处的切线的斜率为1.

(1)若函数f(x)的图象在上为减函数,求的取值范围;

(2)当时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式

1=1

2+3+4=9

3+4+5+6+7=25

4+5+6+7+8+9+10=49

照此规律,第个等式为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计划在某水库建一座至多安装台发电机的水电站,过去年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,不足的年份有年,不低于且不超过的年份有年,超过的年份有年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.

(1)求未来年中,设表示流量超过的年数,求的分布列及期望;

(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:

年入流量

发电机最多可运行台数

若某台发电机运行,则该台年利润为万元,若某台发电机未运行,则该台年亏损万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定对这种食品生产厂家提供政府补贴,设这种食品的市场价格为x元/千克,政府补贴为t元/千克,根据市场调查,当16≤x≤24时,这种食品市场日供应量p万千克与市场日需求量q万千克近似地满足关系:p=2(x+4t-14)(x≥16,t≥0),q=24+8ln (16≤x≤24).当p=q时的市场价格称为市场平衡价格.

(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域.

(2)为使市场平衡价格不高于每千克20元,政府补贴至少为每千克多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(),由此点到相邻最低点间的曲线与x轴交于点(π,0),φ∈(﹣).

(1)求这条曲线的函数解析式;

(2)写出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在

之外的零件数,求

(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得 ,其中为抽取的第个零件的尺寸,

用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计(精确到0.01).

附:若随机变量服从正态分布,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】产品的广告费支出x与销售额y(单位百万元)之间有如下对应数据

x

2

4

5

6

8

y

30

40

60

50

70

(1)画出散点图.

(2)求回归方程.

(3)试预测广告费支出为10百万元时销售额多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为,直线 与以原点为圆心、椭圆的短半轴长为半径的圆相切.

(1)求椭圆的方程;

(2)过椭圆的左顶点作直线,与圆相交于两点 ,若是钝角三角形,求直线的斜率的取值范围.

查看答案和解析>>

同步练习册答案