精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
上一点到椭圆E的两个焦点距离之和为2
3
,椭圆E的离心率为
6
3

(1)求椭圆E的方程;
(2)若b为椭圆E的半短轴长,记C(0,b),直线l经过点C且斜率为2,与直线l平行的直线AB过点(1,0)且交椭圆于A、B两点,求△ABC的面积S的值.
分析:(1)由题设条件,先求出a,b,c的值,然后再求椭圆E的方程.
(2)由题设知点C(0,1),直线L的方程为:y=2x+1,直线AB的方程为:y=2x-2.设A(x1,y1),B(x2,y2),将y=2x-2代入椭圆E的方程
x2
3
+y2=1
,整理可得:13x2-24x+9=0,再由根与系数的关系和点到直线的距离公式能够求出△ABC的面积S的值.
解答:解:(1)由题意,得
2a=2
3
c
a
=
6
3
a2=b2+c2
(2分)
a=
3
b=1
c=
2
.
(4分)
∴椭圆E的方程为
x2
3
+y2=1
(5分)
(2)由(1)可知点C(0,1),易知直线L的方程为:y=2x+1(6分)
直线AB的方程为:y=2x-2(7分)
设A(x1,y1),B(x2,y2),将y=2x-2代入椭圆E的方程
x2
3
+y2=1

整理可得:13x2-24x+9=0,(8分)
x1+x2=
24
13
x1x2=
9
13
,可得|x1-x2|=
6
3
13
(10分)
|AB|=
1+22
|x1-x2|=
5
×
6
3
13
(11分)
设点C(0,1)到直线AB的距离为d,由点到直线的距离公式可得:d=
3
1+22
=
3
5
(13分)
∴△ABC的面积S=
1
2
×|AB|×d=
1
2
×
5
×
6
3
13
×
3
5
=
9
3
13
.(14分)
点评:本题考查圆锥曲线的性质和应用,解题时要认真审题,注意挖掘条件,合理地运用韦达定理和点到直线的距离公式进行解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案