ÒÑÖª¼¯ºÏMDÊÇÂú×ãÏÂÁÐÐÔÖʵĺ¯Êýf£¨x£©µÄÈ«Ì壺´æÔÚ·ÇÁã³£Êýk£¬Ê¹µÃ¶Ô¶¨ÒåÓòDÄÚµÄÈÎÒâÁ½¸ö²»Í¬µÄʵÊýx1£¬x2£¬¾ùÓÐ|f£¨x1£©-f£¨x2£©|¡Ük|x1-x2|³ÉÁ¢£®
£¨¢ñ£© µ±D=Rʱ£¬f£¨x£©=xÊÇ·ñÊôÓÚMD£¿ËµÃ÷ÀíÓÉ£»
£¨¢ò£© µ±D=[0£¬+¡Þ£©Ê±£¬º¯Êýf(x)=
x+1
ÊôÓÚMD£¬ÇókµÄÈ¡Öµ·¶Î§£»
£¨¢ó£© ÏÖÓк¯Êýf£¨x£©=sinx£¬ÊÇ·ñ´æÔÚº¯Êýg£¨x£©=kx+b£¨k¡Ù0£©£¬Ê¹µÃÏÂÁÐÌõ¼þͬʱ³ÉÁ¢£º
¢Ùº¯Êýg£¨x£©¡ÊMD£»
¢Ú·½³Ìg£¨x£©=0µÄ¸ùtÒ²ÊÇ·½³Ìf£¨x£©=0µÄ¸ù£¬ÇÒg£¨f£¨t£©£©=f£¨g£¨t£©£©£»
¢Û·½³Ìf£¨g£¨x£©£©=g£¨f£¨x£©£©ÔÚÇø¼ä[0£¬2¦Ð£©ÉÏÓÐÇÒ½öÓÐÒ»½â£®Èô´æÔÚ£¬Çó³öÂú×ãÌõ¼þµÄkºÍb£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©ÏÈÇó³ö£¬|f£¨x1£©-f£¨x2£©|=|x1-x2|µÃµ½ÆäСÓÚµÈÓÚ2|x1-x2|£¬¼´¿É˵Ã÷Æä³ÉÁ¢£®£¨µ±È»Ò²¿ÉÒÔÈ¡ÆäËükÖµ£©
£¨¢ò£©Ö±½Ó¶Ô|
f(x1)-f(x2)
x1-x2
|
½øÐÐÕûÀí£¬¸ù¾ÝÆäÈ¡Öµ·¶Î§¼´¿ÉµÃµ½kµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Ïȸù¾Ý£¨¢ñ£©¿ÉÖª£¬g£¨x£©=kx+b£¨k¡Ù0£©ÊôÓÚMD£¬ÔÙ½èÖúÓÚtÊÇg£¨x£©=0µÄ¸ù£¬ÒÔ¼°f£¨g£¨t£©£©=g£¨f£¨t£©£©£¬µÃµ½g£¨x£©=kx£»×îºó¸ù¾Ýk·ûºÏÌâÒ⣬Ôò-kÒ²·ûºÏÌâÒ⣬ֻÐèÒª½èÖúÓëµÚÈý¸öÒªÇóÇó³ök£¾0ʱ¶ÔÓ¦µÄ·¶Î§£¬ÔÙ×ۺϼ´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£º£¨¢ñ£©ÊôÓÚMD£®
ÊÂʵÉÏ£¬¶ÔÈÎÒâx1£¬x2¡ÊR£¬|f£¨x1£©-f£¨x2£©|=|x1-x2|¡Ü2|x1-x2|£¬
¹Ê¿ÉÈ¡³£Êýk=2Âú×ãÌâÒ⣬Òò´Ëf£¨x£©¡ÊMD£®
£¨¢ò£©¡ßf(x)=
x+1
ÔÚ[0£¬+¡Þ£©ÎªÔöº¯Êý
¡à¶ÔÈÎÒâx1£¬x2¡Ê[0£¬+¡Þ£©ÓÐ|
f(x1)-f(x2)
x1-x2
|
=|
x1+1
-
x2+1
(x1+1)-(x2+1)
|=
1
x1+1
+
x2+1
£¼
1
2

£¨µ±x1=0£¬x2¡ú0ʱȡµ½£©£¬ËùÒÔk¡Ý
1
2
£¬´Ë¼´ÎªËùÇó£®
£¨¢ó£©´æÔÚ£®
ÊÂʵÉÏ£¬ÓÉ£¨¢ñ£©¿ÉÖª£¬g£¨x£©=kx+b£¨k¡Ù0£©ÊôÓÚMD£®
¡ßtÊÇg£¨x£©=0µÄ¸ù¡àg(t)=0⇒t=-
b
k
£¬
ÓÖf£¨g£¨t£©£©=g£¨f£¨t£©£©£¬¡àf£¨0£©=g£¨0£©£¬¡àb=0£¬¡àg£¨x£©=kx
Èôk·ûºÏÌâÒ⣬Ôò-kÒ²·ûºÏÌâÒ⣬¹ÊÒÔϽö¿¼ÂÇk£¾0µÄÇéÐΣ®
Éèh£¨x£©=f£¨g£¨x£©£©-g£¨f£¨x£©£©=sinkx-ksinx£¬
¢ÙÈôk¡Ý1£¬Ôò
ÓÉh(
¦Ð
k
)=sin¦Ð-ksin
¦Ð
k
£¼0
£¬
ÇÒh(
3¦Ð
2
)=sin
3k¦Ð
2
-ksin
3¦Ð
2
=sin
3k¦Ð
2
+k¡Ý0
£¬
ËùÒÔ£¬ÔÚ[
¦Ð
k
£¬
3¦Ð
2
]
ÖÐÁíÓÐÒ»¸ù£¬Ã¬¶Ü£®
¢ÚÈô
1
2
£¼k£¼1
£¬
Ôòh(
¦Ð
k
)=sin¦Ð-ksin
¦Ð
k
¡Ý0£¬h[2¦Ð]
=sin2k¦Ð-ksin2¦Ð£¼0£¬
ËùÒÔÔÚ[
¦Ð
k
£¬2¦Ð]
ÖÐÁíÓÐÒ»¸ù£¬Ã¬¶Ü£®¡à0£¼k¡Ü
1
2
£®
ÒÔÏÂÖ¤Ã÷£¬¶ÔÈÎÒâk¡Ê(0£¬
1
2
]£¬g(x)=kx
·ûºÏÌâÒ⣮
£¨¢¡£©µ±x¡Ê(0£¬
¦Ð
2
]
ʱ£¬ÓÉy=sinxͼÏóÔÚÁ¬½ÓÁ½µã£¨0£¬0£©£¬£¨x£¬sinx£©µÄÏ߶εÄÉÏ·½Öªsinkx£¾ksinx
¡àh£¨x£©£¾0£®
£¨¢¢£©µ±x¡Ê(
¦Ð
2
£¬
¦Ð
2k
]
ʱ£¬sinkx£¾sin
k¦Ð
2
¡Ýksin
¦Ð
2
¡Ýksinx¡àh(x)£¾0
£®
£¨¢££©µ±x¡Ê(
¦Ð
2k
£¬2¦Ð)
ʱ£¬sinkx£¾0£¬sinx£¼0£¬¡àh£¨x£©£¾0£®
´Ó¶øh£¨x£©=0ÓÐÇÒ½öÓÐÒ»¸ö½âx=0£¬¡àg£¨x£©=kxÔÚk¡Ê(0£¬
1
2
]
Âú×ãÌâÒ⣮
×ÛÉÏËùÊö£ºk¡Ê[-
1
2
£¬0)¡È(0£¬
1
2
]£¬b=0
ΪËùÇó£®
µãÆÀ£º±¾ÌâÊÇÔÚж¨Òå϶Ժ¯Êýºã³ÉÁ¢ÎÊÌâµÄ¿¼²é£¬µÚÈýÎʱȽÏÂé·³£¬½¨Òé³Ì¶È½Ï²îµÄѧÉúÖ±½ÓÂÔ¹ý£¬Ö»Ðë¿´Ç°Á½Îʼ´¿É£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÒÑÖªº¯Êýf£¨x£©=-x2+4£¨x¡Ê£¨-1£¬2£©£©£¬P¡¢QÊÇf£¨x£©Í¼ÏóÉϵÄÈÎÒâÁ½µã£®
¢ÙÊÔÇóÖ±ÏßPQµÄбÂÊkPQµÄÈ¡Öµ·¶Î§£»
¢ÚÇóf£¨x£©Í¼ÏóÉÏÈÎÒ»µãÇÐÏßµÄбÂÊkµÄ·¶Î§£»
£¨2£©ÓÉ£¨1£©ÄãÄܵóöʲô½áÂÛ£¿£¨Ö»Ðëд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©£¬ÊÔÔËÓÃÕâ¸ö½áÂÛ½â´ðÏÂÃæµÄÎÊÌ⣺ÒÑÖª¼¯ºÏMDÊÇÂú×ãÏÂÁÐÐÔÖʺ¯Êýf£¨x£©µÄÈ«Ì壺Èôº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪD£¬¶ÔÈÎÒâµÄx1£¬x2¡ÊD£¬£¨x1¡Ùx2£©ÓÐ|f£¨x1£©-f£¨x2£©|£¼|x1-x2|£®
¢Ùµ±D=£¨0£¬1£©Ê±£¬f£¨x£©=lnxÊÇ·ñÊôÓÚMD£¬ÈôÊôÓÚMD£¬¸øÓèÖ¤Ã÷£¬·ñÔò˵Ã÷ÀíÓÉ£»
¢Úµ±D=(0£¬
3
3
)
£¬º¯Êýf£¨x£©=x3+ax+bʱ£¬Èôf£¨x£©¡ÊMD£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏMDÊÇÂú×ãÏÂÁÐÐÔÖʺ¯Êýf(x)µÄÈ«Ì壺Èôº¯Êýf(x)µÄ¶¨ÒåÓòΪD£¬¶ÔÈÎÒâµÄx1,x2¡ÊD,(x1¡Ùx2)ÓÐ|f(x1)-f(x2)|£¼|x1-x2|.

£¨1£©µ±D=(0,+¡Þ)ʱ£¬f(x)=lnxÊÇ·ñÊôÓÚMD£¬ÈôÊôÓÚMD£¬¸øÓèÖ¤Ã÷£¬·ñÔò˵Ã÷ÀíÓÉ£»

£¨2£©µ±D=(0,)£¬º¯Êýf(x)=x3+ax+bʱ£¬Èô f(x)¡ÊM.ÇóʵÊýaµÄÈ¡Öµ·¶Î§.?

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÑ¡ÐÞ2-2×ۺϲâÊÔ£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

£¨1£©ÒÑÖªº¯Êýf£¨x£©=-x2+4£¨x¡Ê£¨-1£¬2£©£©£¬P¡¢QÊÇf£¨x£©Í¼ÏóÉϵÄÈÎÒâÁ½µã£®
¢ÙÊÔÇóÖ±ÏßPQµÄбÂÊkPQµÄÈ¡Öµ·¶Î§£»
¢ÚÇóf£¨x£©Í¼ÏóÉÏÈÎÒ»µãÇÐÏßµÄбÂÊkµÄ·¶Î§£»
£¨2£©ÓÉ£¨1£©ÄãÄܵóöʲô½áÂÛ£¿£¨Ö»Ðëд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©£¬ÊÔÔËÓÃÕâ¸ö½áÂÛ½â´ðÏÂÃæµÄÎÊÌ⣺ÒÑÖª¼¯ºÏMDÊÇÂú×ãÏÂÁÐÐÔÖʺ¯Êýf£¨x£©µÄÈ«Ì壺Èôº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪD£¬¶ÔÈÎÒâµÄx1£¬x2¡ÊD£¬£¨x1¡Ùx2£©ÓÐ|f£¨x1£©-f£¨x2£©|£¼|x1-x2|£®
¢Ùµ±D=£¨0£¬1£©Ê±£¬f£¨x£©=lnxÊÇ·ñÊôÓÚMD£¬ÈôÊôÓÚMD£¬¸øÓèÖ¤Ã÷£¬·ñÔò˵Ã÷ÀíÓÉ£»
¢Úµ±£¬º¯Êýf£¨x£©=x3+ax+bʱ£¬Èôf£¨x£©¡ÊMD£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2007Äê½­ËÕÊ¡ËÕÖÝÊÐľä¸߼¶ÖÐѧ¸ß¿¼ÊýѧģÄâÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖª¼¯ºÏMDÊÇÂú×ãÏÂÁÐÐÔÖʵĺ¯Êýf£¨x£©µÄÈ«Ì壺´æÔÚ·ÇÁã³£Êýk£¬Ê¹µÃ¶Ô¶¨ÒåÓòDÄÚµÄÈÎÒâÁ½¸ö²»Í¬µÄʵÊýx1£¬x2£¬¾ùÓÐ|f£¨x1£©-f£¨x2£©|¡Ük|x1-x2|³ÉÁ¢£®
£¨¢ñ£© µ±D=Rʱ£¬f£¨x£©=xÊÇ·ñÊôÓÚMD£¿ËµÃ÷ÀíÓÉ£»
£¨¢ò£© µ±D=[0£¬+¡Þ£©Ê±£¬º¯ÊýÊôÓÚMD£¬ÇókµÄÈ¡Öµ·¶Î§£»
£¨¢ó£© ÏÖÓк¯Êýf£¨x£©=sinx£¬ÊÇ·ñ´æÔÚº¯Êýg£¨x£©=kx+b£¨k¡Ù0£©£¬Ê¹µÃÏÂÁÐÌõ¼þͬʱ³ÉÁ¢£º
¢Ùº¯Êýg£¨x£©¡ÊMD£»
¢Ú·½³Ìg£¨x£©=0µÄ¸ùtÒ²ÊÇ·½³Ìf£¨x£©=0µÄ¸ù£¬ÇÒg£¨f£¨t£©£©=f£¨g£¨t£©£©£»
¢Û·½³Ìf£¨g£¨x£©£©=g£¨f£¨x£©£©ÔÚÇø¼ä[0£¬2¦Ð£©ÉÏÓÐÇÒ½öÓÐÒ»½â£®Èô´æÔÚ£¬Çó³öÂú×ãÌõ¼þµÄkºÍb£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸