精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2﹣|x|,若 ,则实数m的取值范围是

【答案】
【解析】解:易知函数f(x)=x2﹣|x|为偶函数,
且x∈(0,+∞)时,f(x)=x2﹣x,
在(0, )上单调递减,( ,+∞)上单调递增,
作出f(x)图象如图所示:

因此不等式 等价于
解这个不等式得
所以答案是
【考点精析】根据题目的已知条件,利用函数图象的作法和二次函数的性质的相关知识可以得到问题的答案,需要掌握图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转、伸缩变换;③利用反函数的图象与对称性描绘函数图象;当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形, 平面 .试结合向量法:(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足:对任意x,y∈R,都有f(x+y)=f(x)f(y)﹣f(x)﹣f(y)+2成立,且x>0时,f(x)>2,
(1)求f(0)的值,并证明:当x<0时,1<f(x)<2.
(2)判断f(x)的单调性并加以证明.
(3)若函数g(x)=|f(x)﹣k|在(﹣∞,0)上递减,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3+bx2+cx+d图象如图,则函数 的单调递减区间为(

A.(﹣∞,﹣2)
B.[3,+∞)
C.[﹣2,3]
D.[

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|+a.
(Ⅰ)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】同时具有性质:“①最小正周期是π;②图象关于直线 对称;③在 上是增函数.”的一个函数为(
A.
B. ??
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中a为实数.
(1)当 时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x≥ 时,若关于x的不等式f(x)≥0恒成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为an(n∈N*),且{an}的前n项和为Sn , 则Sn=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线M: =1(a>0,b>0)的上焦点为F,上顶点为A,B为虚轴的端点,离心率e= ,且SABF=1﹣ .抛物线N的顶点在坐标原点,焦点为F.
(1)求双曲线M和抛物线N的方程;
(2)设动直线l与抛物线N相切于点P,与抛物线的准线相交于点Q,则以PQ为直径的圆是否恒过y轴上的一个定点?如果经过,试求出该点的坐标,如果不经过,试说明理由.

查看答案和解析>>

同步练习册答案