精英家教网 > 高中数学 > 题目详情

如图,在三棱柱ABC-A1B1C1中,AB⊥BC,BC⊥BC1,AB=BC1,E,F,G分别为线段AC1,A1C1,BB1的中点,求证:
(1)平面ABC⊥平面ABC1
(2)EF∥面BCC1B1
(3)GF⊥平面AB1C1

证明:(1)
∵BC⊥AB
BC⊥BC1
AB∩BC1=B
∴平面ABC⊥平面ABC1(4分)

(2)∵AE=EC1,A1F=FG,∴EF∥AA1∵BB1∥AA1
∴EF∥BB1∵EF?BCC1B1∴EF∥面BCC1B1

(3)连接EB,则四边形EFGB为平行四边形
∵EB⊥AC1
∴FG⊥AC1
∵BC⊥面ABC1
∴B1C1⊥面ABC1
∴B1C1⊥BE
∴FG⊥B1C1
∵B1C1∩AC1=C1
所以:GF⊥平面AB1C1
分析:(1)由BC⊥AB和BC⊥BC1即可推得平面ABC⊥平面ABC1
(2)先利用条件推得EF∥AA1,再利用BB1∥AA1即可得到EF∥BB1?EF∥面BCC1B1
(3)先证明FG⊥AC1,再利用条件BC⊥面ABC1推出FG⊥B1C1,即可得到GF⊥平面AB1C1
点评:本题考查平面和平面垂直的判定和性质和线面平行的推导以及线面垂直的判定.在证明线面平行时,其常用方法是在平面内找已知直线平行的直线.当然也可以用面面平行来推导线面平行.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A'B'C'中,若E、F分别为AB、AC的中点,平面EB'C'F将三棱柱分成体积为V1、V2的两部分,那么V1:V2为(  )
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,则此三棱柱的侧视图的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,四边形A1ABB1为菱形,∠A1AB=60°,四边形BCC1B1为矩形,若AB⊥BC且AB=4,BC=3
(1)求证:平面A1CB⊥平面ACB1
(2)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若N是AB上一点,且
AN
AB
=
CM
CC1
,求证:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分别在线段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1
(2)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.

查看答案和解析>>

同步练习册答案