精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知斜三棱柱ABC—A1B1C1的底面是正三角形,侧面ABB1A1是边长为2的菱形,且,M是AB的中点,

(1)求证:平面ABC;
(2)求点M到平面AA1C1C的距离.
(1)见解析;
(2)
(1)因为,只需证即可.然后证为正三角形.
(2)在(1)的基础上,取AC的中点N,连接A1N,则易证:,
所以,再过M作,垂直为Q,则MQ为点M到平面AA1C1C的距离.
(Ⅰ)∵侧面是菱形,
,∴为正三角形.
又∵点的中点,∴,
由已知,∴平面.(4分)
(Ⅱ)作, 连接,作

由已知, 又∵,∴,
, 得,
,且, ,∴,
于是即为所求,                                            (8分)
∵菱形边长为2,易得, ,
.                                           (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
如图,在直三棱柱中,,点的中点,

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,,点E在棱PB上.

(Ⅰ)求证:平面
(Ⅱ)当时,求AE与平面PDB所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知是矩形,平面的中点.

(1)求证:平面
(2)求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图多面体PQABCD由各棱长均为2的正四面体和正四棱锥拼接而成

(Ⅰ)证明PQ⊥BC;
(Ⅱ)若M为棱CQ上的点且,  
的取值范围,使得二面角P-AD-M为钝二面角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别是PC、PD、BC的中点,现将△PDC沿CD折起,使平面PDC⊥平面ABCD(如图2)
(1)求二面角G-EF-D的大小;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是两条不同的直线,是两个不同的平面,
有下列四个命题:
①若  ;
,则
③若
④若
其中正确的命题是      .(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线平面给出下列四个命题:
①若②若
③若④若
其中真命题是(   )
A.①②B.①③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正三棱锥ABC,点P,A,B,C都在半径为的求面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为________。

查看答案和解析>>

同步练习册答案