精英家教网 > 高中数学 > 题目详情
如图2-1-14,已知BC为半圆O的直径,F是半圆上异于B、C的一点,A是的中点,AD⊥BC于点D,BF交AD于点E.

(1)求证:BE·BF=BD·BC;

(2)试比较线段BD与AE的大小,并说明理由.

2-1-14

(1)证明:连结CF.

∵BC是直径,∴∠BFC=90°,

∵AD⊥BC,∴∠BDE=90°,∠B=∠B.

∴△BCF∽△BED.∴.

∴BE·BF=BC·BD.

(2)解:AE>BD,证明如下:

连结AB、AC,则∠BAC=90°,

=,∴∠ABF=∠ACB.

∵∠ACB+∠ABC=90°,∠BAD+∠ABD=90°,

∴∠ACB=∠BAD.∴∠ABF=∠BAD.

∴AE=BE.

在Rt△BDE中,BE>BD.∴AE>BD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图2-1-14,已知AB是半圆O的直径,弦ADBC相交于点P,那么等于(  )

图2-1-14

A.sin∠BPD              B.cos∠BPD                    C.tan∠BPD                 D.cot∠BPD

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-1-14,已知AB是半圆O的直径,弦AD、BC相交于点P,那么等于(    )

图2-1-14

A.sin∠BPD                     B.cos∠BPD

C.tan∠BPD                    D.cot∠BPD

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省揭阳市高三3月第一次高考模拟理科数学试卷(解析版) 题型:解答题

(本小题满分14分)

如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,现将梯形沿CB、DA折起,使,得一简单组合体如图2示,已知分别为的中点.

图1                                图2

(1)求证:平面

(2)求证:

(3)当多长时,平面与平面所成的锐二面角为

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-3-14,已知⊙O是△ABC的外接圆,∠ACB =45°,∠ABC=120°,⊙O的半径为1.

图2-3-14

(1)求弦ACAB的长;

(2)若PCB延长线上的一点,试确定P点的位置,使得PA与⊙O相切,并证明你的结论.

查看答案和解析>>

同步练习册答案