精英家教网 > 高中数学 > 题目详情
(2008•黄冈模拟)正三棱锥P-ABC的三条棱两两互相垂直,则该正三棱锥的内切球与外接球的半径之比为(  )
分析:三棱锥扩展为长方体,它的对角线的长度,就是球的直径,求出正三棱锥的外接球半径;再利用三棱锥的体积的两种求法,列出关于该正三棱锥的内切球的半径的等式,求出内切球的半径,最后求得内切球与外接球的半径之比即可.
解答:解:三棱锥扩展为长方体,它的对角线的长度,就是球的直径,
设侧棱长为a,则
它的对角线的长度为:
3
a
球的半径为:
3
a
2

再设正三棱锥内切球的半径为r,
根据三棱锥的体积的两种求法,得
1
3
×
1
2
×a3
=
1
3
×
[
1
2
a2
×3+
3
4
(
2
a)2
]×r,
∴r=
3-
3
6
a

∴该正三棱锥的内切球与外接球的半径之比为
3-
3
6
a
3
a
2
=(
3
-1):3

故选D.
点评:本题考查棱锥的结构特征,内切球、外接球的知识,考查空间想象能力,计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•黄冈模拟)在四棱锥P-ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(1)求证:平面PAC⊥平面PBD;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)已知等式(1+x-x23•(1-2x24=a0+a1x+a2x2+…+a14x14成立,则a1+a2+a3+…+a13+a14的值等于
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)不等式|x|•(1-3x)>0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)已知直线x+y-1=0与椭圆
x2
a2
+
y2
b2
=1
(a>b>0)相交于A、B两点,M是线段AB上的一点,
AM
=-
BM
,且点M在直线l:y=
1
2
x
上,
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线l的对称点在单位圆x2+y2=1上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)若全集U=R,集合A={x|1-x<0},B={x|x2-2x≤0},则A∩B=(  )

查看答案和解析>>

同步练习册答案