精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
在直角坐标系中,椭圆的左、右焦点分别为. 其中也是抛物线的焦点,点在第一象限的交点,且
(Ⅰ)求的方程;
(Ⅱ)若过点的直线交于不同的两点.之间,试求面积之比的取值范围.(O为坐标原点)
解:(Ⅰ) 依题意知,设.由抛物线定义得,即.
代人抛物线方程得(2分),进而由
解得.故的方程为                    (4分)
(Ⅱ)依题意知直线的斜率存在且不为0,设的方程为代人
整理得                        (6分)
,解得.设,则(1)     (8分)
.将代人(1)得
消去(10分)即
 
解得.面积之比的取值范围为 (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
椭圆的两个焦点F1、F2,点P在椭圆C上,且PF1⊥F1F2,且|PF1|=
(I)求椭圆C的方程。
(II)以此椭圆的上顶点B为直角顶点作椭圆的内接等腰直角三角形ABC,这样的直角三角形是否存在?若存在,请说明有几个;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆短轴的一个端点,离心率.过作直线与椭圆交于另一点,与轴交于点不同于原点),点关于轴的对称点为,直线轴于点
(Ⅰ)求椭圆的方程;
(Ⅱ)求 的值.
[]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的左、右焦点分别为,离心率,右准线方程为
(I)求椭圆的标准方程;
(II)过点的直线与该椭圆交于MN两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题10分)
当m取何值时,直线L:y=x+m与椭圆9x2+16y2=144相切、相交、相离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知椭圆C:的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线与椭圆C交于两点,点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆经过点,离心率为,动点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求以OM为直径且被直线截得的弦长为2的圆的方程;
(Ⅲ)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从一块短轴长为2b的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b2,4b2],则这一椭圆离心率e的取值范围是 (     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆和双曲线有相同的焦点F1、F2,点P为椭圆和双曲线的一个交点,则|PF1|·|PF2|的值是       

查看答案和解析>>

同步练习册答案