精英家教网 > 高中数学 > 题目详情

【题目】某港口水的深度是时间,单位: 的函数,记作.下面是某日水深的数据:

经长期观察, 的曲线可以近似地看成函数的图象.一般情况下,船舶航行时,船底离海底的距离为以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).

(1)求满足的函数关系式;

(2)某船吃水程度(船底离水面的距离)为,如果该船希望在同一天内安全进出港,请问它同一天内最多能在港内停留多少小时?(忽略进出港所需的时间).

【答案】(1)(2)该船最早能在凌晨1时进港,下午17时出港,在港口内最多停留16个小时

【解析】试题分析: 通过读取图表,可以看出函数的周期,根据水的最大深度和最小深度联立方程组求出,即可得到函数的近似表达式;

由题意得到该船进出港时,水深应不小于(米),由解出一天内水深大于等于的时间段,则船从最早满足水深到达的时刻入港,从最晚满足水深的时刻出港是最安全的。

解析:(1)由已知数据,易知的周期,则.

再由,得振幅

所以.

(2)由题意,该船进出港时,水深应不小于(米),

所以,解得

所以),

在同一天内,取或1,所以.

所以该船最早能在凌晨1时进港,下午17时出港,在港口内最多停留16个小时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ x2﹣x+a,a∈R
(1)当a=0时,求函数f(x)的极值;
(2)若函数f(x)在其定义域内有两个不同的极值点(极值点是指函数取极值时对应的自变量的值),记为x1 , x2 , 且x1<x2 . (ⅰ)求a的取值范围;
(ⅱ)若不等式e1+λ<x1x 恒成立,求正实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在校运动会上,甲、乙、丙三位同学每人均从跳远,跳高,铅球,标枪四个项目中随机选一项参加比赛,假设三人选项目时互不影响,且每人选每一个项目时都是等可能的
(1)求仅有两人所选项目相同的概率;
(2)设X为甲、乙、丙三位同学中选跳远项目的人数,求X的分布列和数学期望E(X)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)判断函数的奇偶性,并予以证明;

2时求使的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,AP段围墙造价为每平方米150元,AQ段围墙造价为每平方米100元.若围围墙用了30000元,问如何围可使竹篱笆用料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是圆的直径, 垂直圆所在的平面, 是圆上的点.

(1)求证: 平面

(2)设的中点, 的重心,求证: 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的边上的高所在直线方程分别为 顶点边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)解关于的不等式

(2)若函数在区间上的值域为,求实数的取值范围;

(3)设函数,求满足的集合.

查看答案和解析>>

同步练习册答案