精英家教网 > 高中数学 > 题目详情

【题目】分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段的长度为,在线段上取两个点,使得,以为一边在线段的上方做一个正六边形,然后去掉线段,得到图2中的图形;对图2中的最上方的线段作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:

记第个图形(图1为第1个图形)中的所有线段长的和为,现给出有关数列的四个命题:

①数列是等比数列;

②数列是递增数列;

③存在最小的正数,使得对任意的正整数,都有

④存在最大的正数,使得对任意的正整数,都有

其中真命题的序号是________________(请写出所有真命题的序号).

【答案】②④

【解析】分析:通过分析图1到图4,猜想归纳出其递推规律,再判断该数列的性质

详解:由题意,得图1中的线段为

2中的正六边形的边长为

3中的最小正六边形的边长为

4中的最小正六边形的边长为

由此类推,

为递增数列,但不是等比数列,

错误,正确;

因为

即存在最大的正数

使得对任意的正整数,都有

即④正确,③错误;故填②④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2AD=BAD=90°

求证:ADBC

求异面直线BCMD所成角的余弦值;

(Ⅲ)求直线CD与平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某生产线上质量监督员甲是否在现场对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,1 000件产品中合格品有990件,次品有10件,甲不在现场时,500件产品中有合格品490件,次品有10件.

1)补充下面列联表,并初步判断甲在不在现场与产品质量是否有关:

合格品数/

次品数/

总数/

甲在现场

990

甲不在现场

10

总数/

2)用独立性检验的方法判断能否在犯错误的概率不超过0.15的前提下认为甲在不在现场与产品质量有关

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 ,平面平面 中点.

(Ⅰ)证明: 平面

(Ⅱ)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,点A为曲线上的动点,点B在线段OA的延长线上,且满足,点B的轨迹为

(1)求的极坐标方程;

(2)设点C的极坐标为(2,0),求△ABC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有AB两个投资项目,投资两项目所获得利润分别是(万元),它们与投入资金(万元)的关系依次是:其中平方根成正比,且当4(万元)时1(万元),又成正比,当4(万元)时也是1(万元);某人甲有3万元资金投资.

)分别求出的函数关系式;

)请帮甲设计一个合理的投资方案,使其获利最大,并求出最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数在区间上单调递增,且满,给出下列判断:

;②上是减函数;③的图象关于直线对称;

④函数处取得最大值;⑤函数没有最小值

其中判断正确的序号_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线上的点均在曲线外,且对上任意一点到直线的距离等于该点与曲线上点的距离的最小值.

(1)求动点的轨迹的方程;

(2)过点的直线与曲线交于不同的两点,过点的直线与曲线交于另一点,且直线过点,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,.

(1)求证:

(2)若的中点.

(i)过点作一直线平行,在图中画出直线并说明理由;

(ii)求平面将三棱锥分成的两部分体积的比.

查看答案和解析>>

同步练习册答案