精英家教网 > 高中数学 > 题目详情
若实数x,y满足
y≤5
2x-y+3≤0
x+y-1≥0
,则z=|x|-2y的最大值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
由z=|x|-2y,得y=
1
2
|x|-
z
2

作出直线y=
1
2
|x|,
平移直线y=
1
2
|x|-
z
2
,由图象可知当直线y=
1
2
|x|-
z
2
经过点C时,直线y=
1
2
|x|-
z
2
的截距最小,
此时z最大,
2x-y+3=0
x+y-1=0
,解得
x=-
2
3
y=
5
3

即C(-
2
3
5
3
),
此时zmax=|-
2
3
|-2×
5
3
=
2
3
-
10
3
=-
8
3

故答案为:-
8
3
点评:本题主要考查线性规划的应用,作出平面区域,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

二项式(
2
x
-x25展开式中的第四项的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线3x+4y+c=0与圆(x+1)2+y2=4相切,则c的值为(  )
A、0B、13或-7C、±2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:x3-4x2+4x-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,若a=
3
,cosA=
1
3
,则bc的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A=[-1,3],集合B=(-∞,m),若A⊆B,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知acosB+bcosA=2ccosC,
(1)求角C的值;
(2)若△ABC的面积为S=
3
4
c,且a+b=2c,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若a>0,b>0,c>0,a+b+c=1,则a2+b2+c2
1
3

②已知x>0,y>0,
1
x
+
4
y
=1,若不等式m2-8m-x-y<0恒成立,则实数m的取值范围为(-1,9);
③不等式1<|3x+4|≤4的解集为(-1,0];
④关于x的不等式|x-1|+|x+2|<m的解集不是空集,则m>3.
其中正确的命题个数为(  )
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,其前n项和为Sn,a4=
3
2
,S4=12.则数列{an}的通项公式an=
 
;n=
 
时,Sn最大.

查看答案和解析>>

同步练习册答案