精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求平面ADMN与平面ABCD所成的二面角的余弦值;
(3)求点B到平面PAC的距离.
分析:(1)利用等腰三角形的性质、三角形的中位线定理、共面定理、线面垂直的判定和性质定理即可证明;
(2)利用(1)的结论和二面角的定义即可得出;
(3)利用“等积变形”VP-ABC=VB-PAC,即可得出.
解答:(1)证明:∵N是PB的中点,PA=AB,
∴AN⊥PB.
由PA⊥底面ABCD,得PA⊥AD,
∵∠BAD=90°,即BA⊥AD,
又BA∩AP=A,∴AD⊥平面PAB,
∴AD⊥PB,
∵M、N为中点,∴MN∥BC,
又BC∥AD,∴MN∥AD,
即A、D、M、N共面                                      
又AD∩AN=A,且AD,AN在平面ADMN内,
∴PB⊥平面ADMN,故PB⊥DM.
(2)由(1)知,AD⊥平面PAB,∴AN⊥AD,又AB⊥AD,
∴∠BAN是平面ADMN与平面ABCD所成的二面角的平面角.
在直角三角形PAB中,PB=
PA2+AB2
=
22+22
=2
2

∵N直角三角形PAB斜边PB的中点,∴AN=
2

在直角三角形NAB中,cos∠BAN=
AN
AB
=
2
2

即平面ADMN与平面ABCD所成的二面角的余弦值为
2
2

(3)由已知得,AC=
AB2+BC2
=
5

VP-ABC=
1
3
S△ABC×PA
=
1
3
×
1
2
×2×1×2
=
2
3

  设点B到平面PAC的距离为h,
VB-PAC=
1
3
S△PAC×h
=
1
3
×
1
2
×2×
5
h
=
5
3
h

由VP-ABC=VB-PAC,即
5
3
h=
2
3
,得h=
2
5
5

即点B到平面PAC的距
2
5
5
点评:熟练掌握等腰三角形的性质、三角形的中位线定理、共面定理、线面垂直的判定和性质定理、二面角的定义、“等积变形”是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案