精英家教网 > 高中数学 > 题目详情
17.下列各组中的两个集合相等的是(  )
①P={x|x=2n,n∈Z},Q={x|x=2(n-1),n∈Z},②P={x|x=2n-1,n∈N+},Q={x|x=2n+1,x∈N+},③P={x|x2-x=0},Q={x|x=$\frac{1+(-1)^{n}}{2}$,n∈Z}.
A.①②③B.①③C.②③D.①②

分析 根据集合相等的定义,分别对①②③进行判断即可.

解答 解:对于①:P,Q都表示偶数,是相等集合;
对于②:P={1,3,5,7,••},Q={3,5,7,…},集合Q是集合P的子集,不相等;
对于③:P={0,1},Q={0,1},相等;
故选:B.

点评 本题考查了集合的相等问题,牢记定义是解题的关键,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{ex}{{e}^{x}}$(e为自然数的底数).
(1)是否存在正实数x使得f(1-x)=f(1+x),若存在,求出x,否则说明理由;
(2)若存在不等实数x1,x2,使得f(x1)=f(x2),证明:f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的周期、最值及相应的自变量x的集合和单调区间.
(1)y=cosx+1;
(2)y=cos4x;
(3)y=cos(2x+$\frac{π}{3}$);
(4)y=3cos($\frac{1}{2}$x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求经过A(0,0),B(4,0)两点,并求圆心在直线L:y=x上的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A、B、C的对边分别为a、b、c,4sin($\frac{A+B}{2}$)2-cos2C=$\frac{7}{2}$,a+b=5,c=$\sqrt{7}$,求∠C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|1<ax<2},B={x||x|<1},且A?B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.棱长为1的正方体ABCD-A1B1C1D1中,E、F分别为棱BC、DD1的中点.
(1)若平面AFB1与平面BCC1B1的交线为l,l与底面AC的交点为点G,试求AG的长;
(2)求点A到平面B1EF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l1:4x+y+3=0,l2:3x-5y-5=0,直线l与l1、l2交于A、B两点,且AB中点为P(-1,2),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知实数x和y满足方程:(x+1)2+y2=$\frac{1}{4}$,试求:
(1)$\frac{y}{x}$的最值;
(2)$\sqrt{(x-2)^{2}+(y-3)^{2}}$的最值.

查看答案和解析>>

同步练习册答案